Performance Analysis with Channel Estimation and Adaptive Equalization in Slow Rayleigh Fading Channel for8-QPSK and256-QAM

Performance Analysis with Channel Estimation and Adaptive Equalization in Slow Rayleigh Fading Channel for8-QPSK and256-QAM

论文摘要

在过去的几十年里,因为在对抗多径衰落信道中支持高数据速率和有效性,人们已经对多载波系统进行广泛的研究。多载波调制(MCM)是将数据流分成几个并行的比特流,每个比特率要低得多,并通过使用这些比特流传输数据。多载波调制(MCM)代表目前和未来的高速数字通信。许多新的有线和无线通信应用要求高数据速率和大的带宽。MCM通过正交频分复用(OFDM)的形式应用于在一些如数字音频广播(DAB),数字视频广播(DVB)和无线局域网(WLAN)的无线通信系统中。正交频分复用(OFDM)引入了有限的物理信道带宽内分配更多的交通信道的概念。因此,可用带宽分成几个同时传输的窄带通道。在频分复用,保护带提供个人之间的通道,分隔不同的渠道,能够使用特殊的频段检测通道。在相邻信道的OFDM中不同的频率划分重叠类似于相邻信道干扰,但子载波之间保持正交关系。通过采用OFDM,这是有可能实现对多径信道的高的频率利用率和鲁棒性。在OFDM系统中,调制技术,如BPSK(二进制相移键控)和多级正交调幅(M-QAM)映射到信号星座符号固定数量的信息比特。每个信号的星座符号代表在二维的基带信号空间的一个点。在这篇论文中,我们将测试三种不同的通道(AWGN信道,平坦衰落信道,频率选择性信道)下,数据和图像通过256-QAM和8-QPSK调制接收星座和误码率(BER)。为了比较模拟信道衰落和接收器的设计,我们首先需要选择的相应的标准。目前有很多的根据信道衰落和需要估计标准,如OFDM, CDMA RAKE接收机,MIMO技术等。在本文中,我们选择OFDM标准。我们首先使用MATLAB建立一个无线通信模拟器,包括灰度编码,调制,三通道模式,信道估计,自适应均衡和解调。在我们的模拟中,我们测试不同的信道模式下的256-QAM和8-QPSK的调制星座图和误码率(BER)。在此模型中,我们使用的基于导频信道估计。这是因为导频信息是由接收器使用以便更好地估计在传播符号的频率衰落下有者更高数据接收率。在我们的模型,试验数据的长度是数据总长度的8%,并插入到每个相干时间源数据的头节点。我们还可以使用最小均方(LMS),自适应均衡,以帮助消除无线通道的影响以方便解调。对于图像而言,我们比较在不同的渠道收到的图像和原始图像。在瑞利慢平坦衰落信道,我们比较接收和调整后的图像。另一方面,在瑞利慢衰落信道频率选择性,我们测试在两个不同的模式(判决引导和训练)下接受到的图像。在我们的模型,测试图像文件给我们不同的信道比较下直观的印象。最后,我们给出详细结果和分析在慢瑞利衰落信道下信道估计和自适应均衡的性能改善。仿真结果表明,不像8QPSK在随机数据下平坦衰落信道仿真结果,256-QAM的误码率性能几乎与理论误码率相同。此外,使用256-QAM编码,在频率选择性衰落信道的中决策指示比培训模式的误码率更好,大多数情况下接近理论值。此外,通过比较图像文件,我们可以得到,在频率选择性衰落信道中,决策指挥模式下的256-QAM几乎接近原始图像的质量。这意味着,在256-QAM,均衡的图像不受任何噪音影响。这是因为256-QAM可以发送8位符号这是非常有效率,不同于8-QPSK,受到一些随机噪声导致图像的重叠。

论文目录

  • ABSTRACT
  • 摘要
  • TABLE OF CONTENTS
  • LIST OF FIGURES
  • LIST OF TABLES
  • CHAPTER 1:INTRODUCTION
  • 1.1 Multipath Fading Channel Overview
  • 1.2 Introduction to Multicarrier Modulation
  • 1.3 Main Objectives of This Thesis
  • 1.4 Structure of This Thesis
  • CHAPTER 2:MULTICARRIER MODULATION AND OFDM
  • 2.1 Multicarrier Modulation and Its Applications
  • 2.2 Basic Principles of OFDM
  • 2.2.1 Cyclic Prefix
  • 2.2.2 OFDM in System
  • 2.3 Digital Modulation Schemes
  • 2.3.1 Why Digital Modulation?
  • 2.3.2 Digital Modulation Types
  • 2.3.2.1 Quadrature Amplitude Modulation (QAM)
  • 2.3.2.2 Phase Shift Keying (PSK)
  • 2.4 Summary
  • CHAPTER 3:FADING CHANNELS AND CHANNEL ESTIMATION
  • 3.1 Multipath Fading Channel
  • 3.1.1 Slow versus Fast Fading
  • 3.1.2 Flat versus Frequency Selective Fading
  • 3.2 Rayleigh Fading and Its Characteristics
  • 3.3 Noise Addition
  • 3.4 Channel Estimation
  • 3.4.1 Least Mean Square(LMS)Algorithm
  • 3.4.2 Recursive Least Square(RLS)Algorithm
  • 3.5 Summary
  • CHAPTER 4:THE PROPOSED SYSTEM MODEL
  • 4.1 Related Work
  • 4.2 System Model and Main Techniques
  • 4.2.1 Build-up The System Model
  • 4.2.2 Produce Data and Set Parameters
  • 4.2.3 Produce Different Channels
  • 4.2.3.1 Flat Fading Channel
  • 4.2.3.2 Frequency-Selective Fading Channel
  • 4.2.4 Equalization Algorithms
  • 4.3 Summary
  • Chapter 5:Simulation and experimental results
  • 5.1 256-QAM Modulation
  • 5.1.1 AWGN Channel Under 256-QAM
  • 5.1.2 Flat Fading Channel Under 256-QAM
  • 5.1.3 Frequency-Selective Fading Channel Under 256-QAM
  • 5.2 8-QPSK Modulation
  • 5.2.1 AWGN Channel Under 8-QPSK
  • 5.2.2 Flat Fading Channel Under 8-QPSK
  • 5.2.3 Frequency-Selective Fading Channel Under 8-QPSK
  • 5.3 Summary
  • CHAPTER 6:CONCULSIONS AND FUTURE WORK
  • REFERENCES
  • ACKNOWLEDGEMENTS
  • 相关论文文献

    • [1].Effective capacity of cognitive radio systems in asymmetric fading channels[J]. The Journal of China Universities of Posts and Telecommunications 2015(03)
    • [2].BER Performance of FSO Communication System with Differential Signaling over Correlated Atmospheric Turbulence Fading[J]. 中国通信 2020(04)
    • [3].Symbol error rate performance analysis of soft-decision decoded MPPM free space optical system over exponentiated Weibull fading channels[J]. Chinese Optics Letters 2017(05)
    • [4].Antenna selection based on large-scale fading for distributed MIMO systems[J]. High Technology Letters 2016(03)
    • [5].Distributed differential space-time coding for asynchronous two-way relaying networks with Nakagami-m fading[J]. The Journal of China Universities of Posts and Telecommunications 2014(06)
    • [6].Track Fading and Its Applications in Archaeology, Tectonics and Geothermal Chronology in China[J]. Journal of Earth Science 2013(04)
    • [7].Closed-form expressions for outage probability of decode-and-forward relaying over Nakagami-m fading channels[J]. The Journal of China Universities of Posts and Telecommunications 2010(02)
    • [8].Location based spectrum sensing performance analysis over fading channels in cognitive radio networks[J]. The Journal of China Universities of Posts and Telecommunications 2010(05)
    • [9].ERGODIC CAPACITY ANALYSIS FOR SIMO COGNITIVE FADING CHANNEL IN SPECTRUM SHARING ENVIRONMENT[J]. Journal of Electronics(China) 2010(05)
    • [10].Cooperative Spectrum Sensing over Generalized Fading Channels Based on Energy Detection[J]. 中国通信 2018(05)
    • [11].Statistical Modeling of the High Altitude Platform Dual-Polarized MIMO Propagation Channel[J]. 中国通信 2017(03)
    • [12].Physical-layer secrecy outage of spectrum sharing CR systems over fading channels[J]. Science China(Information Sciences) 2016(10)
    • [13].Independent component analysis to physical-layer network coding over wireless fading channels[J]. Journal of Systems Engineering and Electronics 2013(02)
    • [14].Optimal training sequences for MIMO systems under correlated fading[J]. Journal of Systems Engineering and Electronics 2008(01)
    • [15].Waiting time in block fading MIMO systems with dynamic-depth interleaving[J]. Science China(Information Sciences) 2010(08)
    • [16].Performance analysis of ARQ schemes with code combining over Nakagami-m fading channel[J]. The Journal of China Universities of Posts and Telecommunications 2009(05)
    • [17].A novel strong tracking cubature Kalman filter and its application in maneuvering target tracking[J]. Chinese Journal of Aeronautics 2019(11)
    • [18].Spectral study on feldspar thermoluminescence process[J]. Science in China(Series G:Physics,Mechanics & Astronomy) 2008(03)
    • [19].Frequency hopping in IEEE 802.15.4 to mitigate IEEE 802.11 interference and fading[J]. Journal of Systems Engineering and Electronics 2018(03)
    • [20].Performance analysis of selection cooperative networks over asymmetric fading channels[J]. High Technology Letters 2013(01)
    • [21].Beam evolutions of solitons in strongly nonlocal media with fading optical lattices[J]. Chinese Physics B 2013(01)
    • [22].Performance Analysis of Physical Layer Security over α-η-κ-μ Fading Channels[J]. 中国通信 2018(11)
    • [23].Outage analysis of cognitive two-way relaying networks with SWIPT over Nakagami-m fading channels[J]. Science China(Information Sciences) 2018(02)
    • [24].Finite Series Representation of Rician Shadowed Channel with Integral Fading Parameter and the Associated Exact Performance Analysis[J]. 中国通信 2015(03)
    • [25].The mobility of nonlocal solitons in fading optical lattices[J]. Chinese Physics B 2013(10)
    • [26].Compressed sensing based channel estimation for fast fading OFDM systems[J]. Journal of Systems Engineering and Electronics 2010(04)
    • [27].Stochastic Iterative Learning Control With Faded Signals[J]. IEEE/CAA Journal of Automatica Sinica 2019(05)
    • [28].Channel Modeling for Air-to-Ground Wireless Communication[J]. ZTE Communications 2015(02)
    • [29].Adaptive Modulation and Coding Based on Fuzzy Logic Cognitive Engine[J]. Journal of Donghua University(English Edition) 2015(01)
    • [30].A random linear code based secure transmission scheme for wireless fading channels[J]. Science China(Information Sciences) 2017(04)

    标签:;  ;  ;  

    Performance Analysis with Channel Estimation and Adaptive Equalization in Slow Rayleigh Fading Channel for8-QPSK and256-QAM
    下载Doc文档

    猜你喜欢