木鳖子皂甙对口蹄疫疫苗的免疫增强作用研究

木鳖子皂甙对口蹄疫疫苗的免疫增强作用研究

论文摘要

口蹄疫(Foot-and-mouth disease, FMD)是一种偶蹄动物的烈性接触性传染病,主要危害牛、羊、猪等家畜。使用FMD疫苗是许多国家预防与控制FMD暴发的主要手段。然而有报道认为,FMD疫苗的免疫效果并不十分理想。前期的研究表明,将中药木鳖子中提取的皂甙(Extraction of Cochinchina momordica seed, ECMS)和疫苗混合经注射途径免疫动物可以提高疫苗的免疫效果。木鳖子是一个传统中药,在中国已经使用了1000多年。口服给药是中药的传统给药方法。本论文的研究口服ECMS对疫苗免疫接种的免疫调节作用,为进一步研究开发中药木鳖子提供参考。实验一目的为研究口服ECMS和南美的皂树皂甙Quil A(一种公认的)以及皮下注射FMDV亚洲Ⅰ型抗原对小鼠体重增重的影响。方法40只小鼠随机分成4组,每组10只。ECMS口服组小鼠在免疫前一天灌胃250μL含200μg ECMS的溶液,Quil A组小鼠灌服250μL含200μg Quil A的溶液,阴性对照组小鼠同时口服250μL生理盐水,空白组不作处理。小鼠采用相同方式免疫2次,间隔3周。小鼠可自由采食和饮水,在实验第0、7、14、28和42天分别称体重。结果相同日龄各组间小鼠体重无显著差异。初步结论口服ECMS、Quil A以及FMDV抗原免疫注射对小鼠体重增重没有影响。实验二目的观察口服不同天数ECMS和Quil A对皮下注射O型口蹄疫抗原的体液免疫水平的增强作用。方法将42只ICR小鼠随机分成7组,每组6只。组二、三、四小鼠分别在免疫前口服1、2、3次250μL含200μg ECMS的溶液,每天1次,组五、六、七小鼠分别口服1、2、3次Quil A溶液,每次灌胃200μg Quil A,每天1次,组一在免疫前口服一次250μL生理盐水为对照。最后1次口服后48小时,小鼠皮下注射200μL O型口蹄疫抗原。3周后,用同样方式口服和免疫1次,组一小鼠皮下注射200μl生理盐水。二免后2周,采血检测血清抗FMDV特异性IgG水平,以及抗体亚类IgG1、IgG2a、IgG2b和IgG3水平。结果和初步结论免疫前1次口服ECMS (200μg)和QA (200μg)可提高皮下注射FMDV抗原诱导的血清特异性IgG和多数IgG亚类的抗体水平,统计学比较差异不显著(P>0.05)。实验三目的观察口服1次(1天)ECMS和Quil A对皮下注射亚洲1型口蹄疫抗原的免疫增强作用。方法ECMS口服组小鼠在免疫前口服1次250μl含200μg ECMS的溶液,Quil A组小鼠口服1次含200μg QuilA的溶液,对照组小鼠在免疫前口服一次250μl生理盐水。口服后48小时,小鼠皮下注射200μl O型口蹄疫抗原。采用同样方式口服和免疫一次,间隔3周。二免后2周,采血检测血清抗FMDV特异性IgG水平,以及抗体亚类IgG1、IgG2a、IgG2b和IgG3水平,并分离脾淋巴细胞检测淋巴细胞增殖指数和细胞培养上清中细胞因子的分泌。结果Quil A口服组小鼠IgG水平显著高于对照组IgG(P<0.05)。ECMS口服小鼠血清IgG水平,IgG1、IgG2a、IgG2b和IgG3水平均显著高于对照组(P<0.05)。ECMS口服组小鼠的脾淋巴细胞在体外受Con A刺激后分泌的IFN-y和IL-5水平均显著高于对照组小鼠(P<0.05)。初步结论小鼠在免疫前口服1次ECMS能同时提高机体抗FMD免疫的Thl和Th2型免疫应答反应水平。实验四目的研究比较口服ECMS和疫苗中添加ECMS对口蹄疫亚洲I型和O型病原双价商品苗的免疫增强作用。方法32只ICR小鼠随机分成4组,每组8只。ECMS口服组小鼠在免疫前灌胃200μg ECMS, ECMS注射组在FMD双价疫苗中添加50μg ECMS,对照组同时灌胃生理盐水,小鼠皮下注射100μLFMD双价疫苗。采用同样方式口服和免疫一次,间隔3周。二免后2周,采血检测血清抗FMDV亚洲I型或O型抗原特异性IgG、IgG1、IgG2a, IgG2b和IgG3水平。结果口服ECMS和疫苗添加ECMS都能显著提高小鼠注射口蹄疫亚洲I型和O型病原双价商品苗后血清抗FMDV亚洲I型或O型抗原特异性IgG和多数抗体亚类水平。实验五目的观察口服ECMS对处于免疫抑制状态小鼠注射FMD双价疫苗的免疫增强作用。方法40只ICR小鼠随机分成5组,每组8只。组一:空白对照组,仅注射100μL生理盐水;组二:仅免疫FMD疫苗;组三:每只小鼠连续4天每天注射0.5 mg地塞米松形成免疫抑制,然后注射FMD疫苗;组四:每只小鼠连续4天每天注射0.5 mg地塞米松形成免疫抑制后,口服1次250μL含0.2mg ECMS的溶液,然后注射FMD疫苗;组五:每只小鼠连续4天每天注射0.5mg地塞米松形成免疫抑制后,皮下注射100μL含50μg ECMS的溶液,然后注射FMD疫苗。间隔3周后,用同样方法进行第二次免疫。二免后2周,采血检测血清抗FMDV亚洲I型和O型抗原特异性IgG、IgG1、IgG2a、IgG2b和IgG3水平。结果小鼠皮下注射地塞米松后对口蹄疫疫苗的免疫应答降低,而口服或皮下注射ECMS则可提高免疫抑制小鼠对口蹄疫疫苗免疫产生的血清抗体IgG及其抗体亚类的水平。综上所述,通过本论文研究得到以下结果:(1)1次口服ECMS或QuilA对小鼠体重增重没有显著影响;(2)免疫前1次口服ECMS (200μg)和QA(200μg)可提高皮下注射FMDV抗原诱导的血清特异性IgG和多数IgG亚类的抗体水平,统计学比较差异不显著(P>0.05);(3)小鼠在免疫前口服1次ECMS能同时提高机体抗FMD免疫的Th1和Th2型免疫应答反应水平;(4)口服ECMS和疫苗添加ECMS都能显著提高小鼠注射口蹄疫亚洲I型和O型病原双价商品苗后血清抗FMDV亚洲Ⅰ型或O型抗原特异性IgG和多数抗体亚类水平;(5)小鼠注射地塞米松后对口蹄疫疫苗的免疫应答降低,诱导的免疫抑制小鼠提高血清抗体IgG和抗体亚类的水平。因此,ECMS可作为口服佐剂提高小鼠皮下注射FMD疫苗产生的免疫应答。

论文目录

  • ABBREVIATIONS
  • TABLE OF CONTENTS
  • LIST OF FIGURES
  • LIST OF TABLES
  • ABSTRACT
  • 中文摘要
  • CHAPTER 1 GENERAL INTRODUCTION
  • 1.1 IMPORTANCE
  • 1.2 HYPOTHESIS
  • 1.3 STRUCTURE OF THE STUDY
  • 1.4 COCHINCHINA MOMORDICA
  • 1.5 FRUIT
  • 1.6 ROOT
  • 1.7 SEED
  • 1.8 EXTRACTION OF COCHINCHINA MOMORDICA SEEDS
  • 1.9 QUILLAJA SAPONINS
  • 1.10 STUDY ON MICE
  • 1.11 THESIS OBJECTIVES
  • REFERENCES
  • LITERATURE REVIEW SECTION
  • CHAPTER 2 NEED FOR IMPROVEMENT OF THE IMMUNE RESPONSE TO VACCINATION AGAINST FMD
  • 2.1 INTRODUCTION
  • 2.2 ECONOMIC CONSEQUENCES OF FOOT-AND-MOUTH DISEASE
  • 2.2.1 Local level
  • 2.2.2 National level
  • 2.3 IMPROVING IMMUNE RESPONSE TO VACCINATION AGAINST FMD
  • REFERENCES
  • CHAPTER 3 CURRENT WAYS TO IMPROVE THE IMMUNE RESPONSE TO VACCINATION AGAINST FMD
  • 3.1 INTRODUCTION
  • 3.2 PURPOSE OF DISEASE CONTROL BY VACCINATION
  • 3.3 CURRENT WAYS TO IMPROVE IMMUNE RESPONSE TO VACCINATION AGAINST FMD
  • REFERENCES
  • CHAPTER 4 ADVANTAGES OF ORAL ADJUVANTS
  • 4.1 INTRODUCTION
  • 4.2 FUNCTIONS OF COMMON ADJUVANTS
  • 4.3 THE IDEAL ADJUVANT
  • 4.4 ADVANTAGES OF ORAL ADJUVANTS
  • 4.5 ADJUVANT SELECTION
  • 4.6 ADJUVANT SAFTY
  • 4.7 MUCOSAL ADJUVANTS
  • 4.8 ORAL SAPONIN ADMINISTRATIONS AS ADJUVANTS
  • 4.9 THE MECHANISMS OF IMMUNE-STIMULATING ACTION OF SAPONINS AFTER ORAL ADMINISTRATION
  • REFERENCES
  • EXPERIMENTAL SECTION
  • CHAPTER 5 EFFECT OF ORAL ADMINISTRATION OF QUIL A AND ECMS ON BODYWEIGHT OF MICE
  • Summary
  • 5.1 INTRODUCTION
  • 5.2 MATERIALS AND METHODS
  • 5.2.1 Experimental animals
  • 5.2.2 Quil A and ECMS
  • 5.2.3 FMDV antigen
  • 5.2.4 Oral administration of saponins
  • 5.2.5 Determination of body weight
  • 5.3 STATISTIC ANALYSIS
  • 5.4 RESULT
  • 5.4.1 Effect of Quil A and ECMS on body weight
  • 5.5 DISCUSSION
  • REFERENCES
  • CHAPTER 6 EFFECT OF DOSE FOR ORAL ADMINISTRATION OF QUIL A AND ECMSON THE IMMUNE RESPONSE TO FMDV VACCINATION
  • Summary
  • 6.1 INTRODUCTION
  • 6.2 MATERIALS AND METHODS
  • 6.2.1 Experimental animals
  • 6.2.2 Quil A and ECMS
  • 6.2.3 FMDV antigen
  • 6.2.4 Dose of oral ECMS administration and immunization
  • 6.2.5 Sample collection
  • 6.2.6 Measurement of FMDV serotype O specific IgG and the IgG subclasses
  • 6.3 Satistic analysis
  • 6.4 RESULTS
  • 6.4.1 FMDV-specific IgG
  • 6.4.2 FMDV-specific IgG subclasses
  • 6.5 DISCUSSION
  • REFERENCES
  • CHAPTER 7 ENHANCEMENT OF THE IMMUNE RESPONSES TO VACCINATIONAGAINST FMD BY ORAL ADMINISTRATION OF QUIL A AND ECMS
  • Summary
  • 7.1 INTRODUCTION
  • 7.2 MATERIALS AND METHODS
  • 7.2.1 Experimental animals
  • 7.2.2 Quil A and ECMS
  • 7.2.3 FMDV antigen
  • 7.2.4 Oral administration of saponins and immunization
  • 7.2.5 Sample collection
  • 7.2.6 Measurement of FMDV-specific IgG and IgG subclasses
  • 7.2.7 Measurement of cytokine production by splenocytes
  • 7.3 STATISTIC ANALYSIS
  • 7.4 RESULTS
  • 7.4.1 FMDV-specific IgG
  • 7.4.2 FMDV-specific IgG subclasses
  • 7.4.3 Production of IFN-γ and IL-5 by splenocytes
  • 7.5 DISCUSSION
  • REFERENCES
  • CHAPTER 8 IMPROVEMENT OF A COMMERCIAL FMD VACCINE IN MICE BY ORALADMINISTRATION OF ECMS
  • Summary
  • 8.1 INTRODUCTION
  • 8.2 MATERIALS AND METHODS
  • 8.2.1 Experimental animals
  • 8.2.2 Extract of Cochinchina momordica seeds
  • 8.2.3 Bivalent FMD virus vaccine(serotypes Asia I and O)
  • 8.2.4 Oral administration of ECMS and immunization
  • 8.2.5 Sample collection
  • 8.2.6 Measurement of FMDV Asia 1 and types O specific IgG and the IgG subclasses
  • 8.3 STATISTIC ANALYSIS
  • 8.4 RESULTS
  • 8.4.1 Effect of ECMS on body weight
  • 8.4.2 FMDV-specific IgG
  • 8.4.3 FMDV-specific IgG subclasses
  • 8.5 DISCUSSION
  • REFERENCES
  • CHAPTER 9 IMPROVEMENT OF A COMMERCIAL FMD VACCINE IN IMMUNE-INHIBITED MICE BY ORAL ADMINISTRATION OF ECMS
  • Summary
  • 9.1 INTRODUCTION
  • 9.2 MATERIALS AND METHODS
  • 9.2.1 Experimental animals
  • 9.2.2 Dexamethasone and immunosuppression
  • 9.2.3 Extract of Cochinchina momordica seeds(ECMS)
  • 9.2.4 Bivalent FMD virus vaccine(serotypes Asia I and O)
  • 9.2.5 Oral administration of ECMS and immunization
  • 9.2.6 Sample collection
  • 9.2.7 Measurement of FMDV type Asia 1 and O specific IgG and the IgG subclasses
  • 9.3 STATISTIC ANALYSIS
  • 9.4 RESULTS
  • 9.4.1 Effect of ECMS on growth performance
  • 9.4.2 FMDV Asia I-specific IgG and subclasses
  • 9.4.3 FMDV serotype O-specific IgG and subclasses
  • 9.5 DISCUSSION
  • REFERENCES
  • CONCLUDING REMARKS
  • FUTURE PROSPECTS
  • ACKNOWLEDGEMENTS
  • APPENDICES
  • COMMONLY USED EQUIPMENTS/INSTRUMENTS
  • PUBLICATIONS
  • 相关论文文献

    • [1].The DEAD-Box RNA Helicase DDX1 Interacts with the Viral Protein 3D and Inhibits Foot-and-Mouth Disease Virus Replication[J]. Virologica Sinica 2019(06)
    • [2].Comparative Transcriptome Analysis Reveals Different Host Cell Responses to Acute and Persistent Foot-and-Mouth Disease Virus Infection[J]. Virologica Sinica 2020(01)
    • [3].FMDV细胞表面受体研究概述[J]. 现代农业 2017(12)
    • [4].CD44受体分子对口蹄疫病毒感染的影响[J]. 中国兽医科学 2016(12)
    • [5].抗FMDV基因疫苗的研究进展[J]. 西南民族大学学报(自然科学版) 2013(04)
    • [6].猪O型FMDV重组多表位抗原基因的克隆表达及免疫学鉴定[J]. 甘肃农业大学学报 2017(01)
    • [7].Expression of Major B-cell Epitopes within the 2C Non-structural Protein of FMDV and Their Immunoreactivity[J]. 畜牧兽医学报 2009(S1)
    • [8].猪O型FMDV主要抗原表位多肽的合成与鉴定[J]. 西北农业学报 2014(10)
    • [9].A Simple and Rapid Colloidal Gold-based Immunochromatogarpic Strip Test for Detection of FMDV Serotype A[J]. Virologica Sinica 2011(01)
    • [10].口蹄疫病毒O型和A型交互反应性单克隆抗体的筛选与鉴定[J]. 中国兽医科学 2020(04)
    • [11].口蹄疫病毒利用自身蛋白逃逸宿主天然免疫应答的研究进展[J]. 畜牧兽医学报 2020(11)
    • [12].Molecular Design and Immunogenicity of a Multiple-epitope FMDV Antigen and DNA Vaccination[J]. Chemical Research in Chinese Universities 2008(01)
    • [13].FMDV疫苗规模化生产过程中生物反应器参数控制对病毒增殖的影响[J]. 湖南畜牧兽医 2016(05)
    • [14].携带FMDV前导蛋白基因逆转录病毒载体的构建及其在牛肾细胞中的表达[J]. 生物工程学报 2008(05)
    • [15].口蹄疫病毒外源序列插入位点的研究进展[J]. 生物工程学报 2014(02)
    • [16].牛干扰素诱导跨膜蛋白3对口蹄疫病毒感染的抑制作用[J]. 中国兽医学报 2016(12)
    • [17].Engineering infectious foot-and-mouth disease virus in vivo from a full-length genomic cDNA clone of the A/AKT/58 strain[J]. Science in China(Series C:Life Sciences) 2009(02)
    • [18].Generation of Monoclonal Antibodies against Non-structural Protein 3AB of Foot-and-Mouth Disease Virus[J]. Virologica Sinica 2012(05)
    • [19].Develope Monoclonal Antibody against Foot-and-mouth Disease Virus A Type[J]. Virologica Sinica 2011(04)
    • [20].非致病大肠杆菌鞭毛与O型FMDV结构蛋白VP1嵌合体的免疫效力评估[J]. 畜牧与兽医 2018(12)
    • [21].口蹄疫病毒3C蛋白酶结构与功能及应用研究进展[J]. 动物医学进展 2017(03)
    • [22].口蹄疫病毒持续感染的研究进展[J]. 中国兽医科学 2012(02)
    • [23].塞内卡病毒和口蹄疫病毒二重实时荧光RT-PCR鉴别检测方法的建立[J]. 中国兽医学报 2019(12)
    • [24].多重荧光RT-PCR同步检测及鉴别诊断口蹄疫和水泡性口炎[J]. 中国兽医科学 2020(10)
    • [25].Evolution and molecular epidemiology of foot-and-mouth disease virus in China[J]. Chinese Science Bulletin 2011(21)
    • [26].Application of VP1 Protein to Develop Monoclonal Antibody against Foot-and-mouth Disease Virus Asia1 Type[J]. Virologica Sinica 2009(03)
    • [27].口蹄疫病毒免疫学研究进展[J]. 动物医学进展 2009(06)
    • [28].1—2月龄荷斯坦奶牛不同组织中FMDV受体亚基αv、β3、β6 mRNA转录水平的相对定量研究[J]. 中国农业科学 2010(03)
    • [29].口蹄疫病毒反向遗传学研究进展[J]. 微生物学通报 2009(01)
    • [30].FMDV特性、感染机理以及免疫方案探讨[J]. 今日养猪业 2017(01)

    标签:;  ;  ;  ;  

    木鳖子皂甙对口蹄疫疫苗的免疫增强作用研究
    下载Doc文档

    猜你喜欢