AlGaN/GaN HEMT器件建模及功率合成研究

AlGaN/GaN HEMT器件建模及功率合成研究

论文摘要

GaN是近年来迅速发展起来的第三代宽禁带半导体材料之一,AlGaN/GaNHEMT在高温、大功率、高频、抗辐射等领域有着广阔的应用前景。准确的器件建模对提高RF和微波电路设计的成功率、缩短电路研制周期是非常重要的。本论文建立了AlGaN/GaN HEMT器件的等效电路模型,并以建立的模型为基础,设计了AlGaN/GaN HEMT微波功率合成电路。首先,本文基于传统HEMT小信号模型,提出了适合AlGaN/GaN HEMT的小信号等效电路拓扑结构和精确的小信号模型参数提取方法。建立的小信号等效电路模型具有比较简单、精确和宽带(0-10GHz)等特性,为大信号分析提供必要的数据支持。然后,从几种常见的HEMT器件大信号直流I-V特性模型出发,针对GaNHEMT器件较为显著的自热效应,本文以Curtice立方大信号模型为基础,通过修改其大信号等效电路拓扑结构,增加表征器件自热效应的热电路;并改进模型中I-V特性表达式,引入器件温度对输出特性的影响,使器件I-V特性模型更能准确地反映器件实际的工作特性。接着详细地分析了AlGaN/GaN HEMT器件大信号电容模型。最后,为了获得大的输出功率,利用混合电路将多路放大器并联实现功率合成。在本文建立的AlGaN/GaN HEMT器件模型的基础上,利用微带型Wilkinson功率分配器/合成器,设计了GaN HEMT微波功率合成电路。电路在3.5GHz中心频率下,最大输出功率达到3.5W,功率附加效率为32%。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 选题背景
  • 1.2 国内外研究动态
  • 1.3 本文的主要研究内容
  • 第二章 AlGaN/GaN HEMT小信号模型分析
  • 2.1 AlGaN/GaN HEMT器件结构与工作原理
  • 2.2 HEMT小信号模型
  • 2.3 AlGaN/GaN HEMT小信号等效电路模型分析
  • 2.3.1 GaN HEMT小信号模型寄生参数提取
  • 2.3.2 GaN HEMT小信号模型本征参数的提取
  • 2.3.3 GaN HEMT小信号模型元件参数优化
  • 2.4 模型验证
  • 第三章 AlGaN/GaN HEMT大信号模型分析
  • 3.1 HEMT大信号模型
  • 3.2 GaN HEMT大信号I-V特性模型
  • 3.2.1 几种常见的大信号I-V特性模型
  • 3.2.2 一种改进的大信号I-V特性模型
  • 3.3 GaN HEMT非线性电容模型
  • gd和栅源电流Igs模型'>3.4 漏栅电流Igd和栅源电流Igs模型
  • 第四章 GaN HEMT微波功率合成研究
  • 4.1 微波功率分配器/合成器的分析与设计
  • 4.1.1 微带线
  • 4.1.2 Wilkinson功率分配器/合成器分析
  • 4.1.3 微带型Wilkinson功率分配器/合成器的设计与仿真
  • 4.2 GaN HEMT微波功率合成电路的设计与分析
  • 4.2.1 GaN HEMT单管微波功率放大器的设计与分析
  • 4.2.2 双管微波功率合成电路的设计与分析
  • 第五章 结论
  • 致谢
  • 参考文献
  • 在学期间取得的研究成果
  • 相关论文文献

    • [1].Characterization of Interface Charge in NbAlO/AlGaN/GaN MOSHEMT with Different NbAlO Thicknesses[J]. Chinese Physics Letters 2015(01)
    • [2].High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chinese Physics Letters 2015(03)
    • [3].Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors[J]. Chinese Physics Letters 2015(12)
    • [4].基于第一性原理的AlGaN合金热电性质研究[J]. 人工晶体学报 2019(12)
    • [5].In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT[J]. Chinese Physics B 2020(04)
    • [6].Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chinese Physics Letters 2020(02)
    • [7].Theoretical analytic model for RESURF AlGaN/GaN HEMTs[J]. Chinese Physics B 2019(02)
    • [8].Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer[J]. Chinese Physics B 2019(04)
    • [9].Method of evaluating interface traps in Al_2O_3/AlGaN/GaN high electron mobility transistors[J]. Chinese Physics B 2019(06)
    • [10].AlGaN/GaN横向肖特基势垒二极管的仿真与制作[J]. 半导体技术 2018(05)
    • [11].Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research 2017(02)
    • [12].Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE[J]. Chinese Physics B 2017(06)
    • [13].Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication[J]. Chinese Physics Letters 2016(11)
    • [14].Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chinese Physics Letters 2016(06)
    • [15].Fabrication of GaN-Based Heterostructures with an InA1GaN/AlGaN Composite Barrier[J]. Chinese Physics Letters 2016(08)
    • [16].Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure[J]. Chinese Physics B 2016(06)
    • [17].Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor[J]. Chinese Physics B 2015(08)
    • [18].Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer[J]. Chinese Physics B 2013(10)
    • [19].AlGaN Channel High Electron Mobility Transistors with an Al_xGa_(1-x)N/GaN Composite Buffer Layer[J]. Chinese Physics Letters 2015(07)
    • [20].Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer[J]. Optoelectronics Letters 2020(04)
    • [21].硅基AlGaN紫外大功率LED外延、芯片与封装的专利分析[J]. 中国照明电器 2019(08)
    • [22].Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors[J]. Chinese Physics B 2017(09)
    • [23].Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs[J]. Chinese Physics B 2017(09)
    • [24].Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric[J]. Chinese Physics Letters 2016(09)
    • [25].High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chinese Physics Letters 2017(01)
    • [26].Aluminum incorporation efficiencies in A- and C-plane AlGaN grown by MOVPE[J]. Chinese Physics B 2016(04)
    • [27].Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer[J]. Chinese Physics B 2014(03)
    • [28].A GaN AlGaN InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED[J]. Chinese Physics B 2014(04)
    • [29].An improved EEHEMT model for kink effect on AlGaN/GaN HEMT[J]. Chinese Physics B 2014(08)
    • [30].Low-resistance Ohmic contact on polarization-doped AlGaN/GaN heterojunction[J]. Chinese Physics B 2014(10)

    标签:;  ;  ;  

    AlGaN/GaN HEMT器件建模及功率合成研究
    下载Doc文档

    猜你喜欢