现代汉语名量词语义分析及认知阐释

现代汉语名量词语义分析及认知阐释

论文摘要

量词是汉藏语系中的特殊词类之一,丰富生动的量词体现了汉名族认知和表达世界的方式。名量词在汉语量词系统出现最早,构成量词的主体,是本文研究的对象。本文旨在对现代汉语名量词进行系统的语义分析和认知阐释。本文突破传统的基于经典范畴理论的量词定义和划分模式,论证了量词系统各类间的连续性。基于原型范畴理论,发现在前人研究中具有争议的量词次范畴均属于以个体量词为原型的量词范畴边缘成员。量词系统是一个开放连续词类,家族相似性贯穿于名量词各小类。Haiman提出的距离相似原则和戴浩一提出的距离叠加原则被用来揭示量词各小类间句法分布特点。满纳量词所产生的满纳含义是量词和名词唤起的意象与人们实际生活经验冲突的结果。文章分析了量名搭配的量名语义关系,认为量名之间存在同一性,并将其分为相似关系和相关关系两大类。概念隐喻和概念转喻是促成量名搭配的认知机制。名量词具有“凸显”名词认知视角的功能。Lakoff提出的范畴扩展动因理论为本文分析量词范畴扩展提供了理论基础。在对个案进行分析的基础上,文章论证了量词范畴扩展的动因主要包括概念隐喻,概念转喻,意象图示和规约意象,其扩展的路线遵循由母体名词到相似名词,由实物名词到轨迹名词,由包含空间概念名词到包含时间概念名词,由普通名词到抽象名词的顺序。通常被认为超常搭配的量词短语同样具有理据性,属于量词扩展的边缘成员。本文从语义和认知的角度解决了量词研究中留下的一些问题,丰富了量词系统研究和范畴研究,也有助于量词习得和教学。

论文目录

  • 摘要
  • Abstract
  • Contents
  • List of figures
  • List of tables
  • Chapter 1 Introduction
  • 1.1 Significance of the Study
  • 1.2 Research Objectives
  • 1.3 Research Methodology
  • 1.4 Organization of the Paper
  • Chapter 2 Literature Review
  • 2.1 Classification of Noun Classifiers
  • 2.2 Rhetoric Function Study
  • 2.3 Semantic Approaches to Noun Classifiers
  • 2.4 Cognitive Approaches to Noun Classifiers
  • 2.4.1 Cognitive Functions
  • 2.4.2 Cognitive Models
  • 2.5 Summary
  • Chapter 3 Theoretical Framework
  • 3.1 Prototype-based Word Class
  • 3.2 Metaphor and Metonymy
  • 3.3 Motivations for the Extension of Category
  • 3.4 Summary
  • Chapter 4 Family Resemblance and Cognitive Interpretation
  • 4.1 Prototype: Individual Classifiers
  • 4.2 Distribution Feature Comparison
  • 4.3 Cognitive Interpretation of Distribution Features
  • 4.4 Cognitive Interpretation of Fullness Meaning Classifiers
  • 4.5 Summary
  • Chapter 5 Semantic Relationship and Cognitive Mechanisms
  • 5.1 Identity between Classifiers and Nouns
  • 5.1.1 Similarity Relationship
  • 5.1.2 Contiguity Relationship
  • 5.2 Metaphor, Metonymy and Classifier-noun Collocation
  • 5.3 Salience, Perspective and Selection of Classifiers
  • 5.4 Summary
  • Chapter 6 Motivations for the Extension of Classifier Category
  • 6.1 Chinese Classifier dao
  • 6.2 “Paranormal” collocation of “yi mei tongnian”
  • 6.3 Summary
  • Chapter 7 Conclusion
  • 7.1 Major Findings of the Study
  • 7.2 Limitations and Suggestions for Further Studies
  • References
  • Acknowledgements
  • Appendix A
  • 相关论文文献

    • [1].Learning a graph-based classifier for fault localization[J]. Science China(Information Sciences) 2020(06)
    • [2].Construction of a convolutional neural network classifier developed by computed tomography images for pancreatic cancer diagnosis[J]. World Journal of Gastroenterology 2020(34)
    • [3].Efficient compressive sensing tracking via mixed classifier decision[J]. Science China(Information Sciences) 2016(07)
    • [4].The modulation recognition based on decision-making mechanism and neural network integrated classifier[J]. High Technology Letters 2013(02)
    • [5].Automatic Classification of Cardiac Arrhythmias Based on Hybrid Features and Decision Tree Algorithm[J]. International Journal of Automation and Computing 2020(04)
    • [6].Face recognition system based on CNN and LBP features for classifier optimization and fusion[J]. The Journal of China Universities of Posts and Telecommunications 2018(01)
    • [7].Construction of unsupervised sentiment classifier on idioms resources[J]. Journal of Central South University 2014(04)
    • [8].Improving naive Bayes classifier by dividing its decision regions[J]. Journal of Zhejiang University-Science C(Computers & Electronics) 2011(08)
    • [9].A multi-class large margin classifier[J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal) 2009(02)
    • [10].Study on the classification of multi-spectral images based on a FSVM multi-class classifier with the binary tree[J]. Optoelectronics Letters 2010(01)
    • [11].An Accurate and Extensible Machine Learning Classifier for Flow-Level Traffic Classification[J]. 中国通信 2018(06)
    • [12].Tracking performance of large margin classifier in automatic modulation classification with a software radio environment[J]. Journal of Systems Engineering and Electronics 2014(05)
    • [13].Evolving Neural Network Using Variable String Genetic Algorithm for Color Infrared Aerial Image Classification[J]. Chinese Geographical Science 2008(02)
    • [14].Research on Remote Sensing Image of Land Cover Classification Based on Multiple Classifier Combination[J]. Wuhan University Journal of Natural Sciences 2011(04)
    • [15].CLASSIFIER FUSION BASED ON EVIDENCE THEORY AND ITS APPLICATION IN FACE RECOGNITION[J]. Journal of Electronics(China) 2009(06)
    • [16].Adversarial Attacks and Defenses in Images,Graphs and Text: A Review[J]. International Journal of Automation and Computing 2020(02)
    • [17].Support vector classifier based on principal component analysis[J]. Journal of Systems Engineering and Electronics 2008(01)
    • [18].Key-Attributes-Based Ensemble Classifier for Customer Churn Prediction[J]. Journal of Electronic Science and Technology 2018(01)
    • [19].Data classification from the inverse n~(th) power gravitation[J]. Science China(Information Sciences) 2012(01)
    • [20].Multiscale classification and its application to process monitoring[J]. Journal of Zhejiang University-Science C(Computer & Electronics) 2010(06)
    • [21].Human Motion Recognition Based on Incremental Learning and Smartphone Sensors[J]. ZTE Communications 2016(S1)
    • [22].Particle swarm optimization based RVM classifier for non-linear circuit fault diagnosis[J]. Journal of Central South University 2012(02)
    • [23].Integration of A Deep Learning Classifier with A Random Forest Approach for Predicting Malonylation Sites[J]. Genomics,Proteomics & Bioinformatics 2018(06)
    • [24].A Novel Tracking-by-Detection Method with Local Binary Pattern and Kalman Filter[J]. Journal of Harbin Institute of Technology(New Series) 2018(03)
    • [25].Empirical Study of Classification Process for Two-stage Turbo Air Classifier in Series[J]. Chinese Journal of Mechanical Engineering 2013(03)
    • [26].An Inception Module CNN Classifiers Fusion Method on Pulmonary Nodule Diagnosis by Signs[J]. Tsinghua Science and Technology 2020(03)
    • [27].A deep learning approach to the classification of 3D CAD models[J]. Journal of Zhejiang University-Science C(Computers & Electronics) 2014(02)
    • [28].RESEARCH AND APPLICATION OF A NEURAL NETWORK CLASSIFIER BASED ON DYNAMIC THRESHOLD[J]. Journal of Electronics(China) 2009(03)
    • [29].Selective Ensemble Learning Method for Belief-Rule-Base Classification System Based on PAES[J]. Big Data Mining and Analytics 2019(04)
    • [30].A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa[J]. Chinese Geographical Science 2020(03)

    标签:;  ;  ;  ;  ;  ;  ;  

    现代汉语名量词语义分析及认知阐释
    下载Doc文档

    猜你喜欢