本文主要研究内容
作者热娜阿斯哈尔(2019)在《Schr?dinger方程的高阶差分格式研究》一文中研究指出:在科学计算中常用有限差分法来求解各类偏微分方程,它是被广泛应用的数值方法之一.本文中我们研究求解非线性Schr?dinger方程的具有高精度的数值方法,提出几种有限差分格式.非线性Schr?dinger方程在物理应用方面起着很有力的作用,尤其是在流体力学、非线性光学、量子力学等方面被广泛应用.然而,多维非线性Schr?dinger方程和分数阶Schr?dinger方程的准确解很难得到.因此,建立一些守恒的有限差分格式来求解多维非线性Schr?dinger方程和分数阶Schr?dinger方程便成了一项重要任务.当前,高精度紧致差分格式由于有着高精度和高效率的优点,越来越受到国内外研究者的关注.本文中,对于多维非线性Schr?dinger方程,我们构造一些守恒的高精度紧致差分格式并分析差分格式的守恒性及稳定性.对于分数阶Schr?dinger方程也构造出几种高精度紧致差分格式,并对所建立的格式进行了数值理论分析.整个论文的具体研究内容包括以下六个部分:第一章,我们介绍非线性Schr?dinger方程及分数阶Schr?dinger方程的研究背景和国内外研究现状,同时也介绍高精度紧致差分格式的发展过程.叙述本文的主要工作,最后回顾将在后续章节中要用到的一些基本知识.第二章,我们分别给出了二维和三维非线性Schr?dinger方程的四阶紧致分裂步差分格式.在本章中,为克服非线性问题引起的求解困难,我们用算子分裂技术把原方程分裂为线性子问题和非线性子问题.对线性子问题建立守恒的四阶精度紧致差分格式,非线性子问题可以被精确求解.讨论格式的稳定性、守恒性和收敛性.数值算例验证我们所构造的格式的精确性和有效性.第三章,我们研究三维非线性Schr?dinger方程的数值解,为了解决多维引起的求解困难,结合分裂步方法分别构造四阶和六阶紧致交替方向隐式(ADI)差分格式,并证明两种格式的无条件稳定性.通过数值实验对两种格式的离散守恒性质、精度和稳定性进行验证.第四章,我们给一维和二维时间分数阶Schr?dinger方程分别提出四阶紧致差分格式和紧致ADI差分格式.时间分数阶Schr?dinger方程含有α(α ∈(0,1))阶的Caputo时间分数阶导数.本章中,分别采用L1数值公式和L1-2数值公式近似Caputo时间分数阶导数,对空间方向导数,利用四阶紧致差分公式.用Fourier分析法和数学归纳法证明了格式的稳定性,并通过一些数值算例验证了理论分析结果.第五章,在已有的研究工作基础上,我们研究求解带有Riesz分数阶导数的空间分数阶非线性Schr?dinger方程的守恒型分裂步Crank-Nicolson差分格式.此外,我们还给出了该算法的稳定性和收敛性分析,并证明了格式的质量守恒性.最后,通过数值算例来验证算法的高效性和理论的准确性.第六章,我们给出本文工作的总结和未来工作的展望.
Abstract
zai ke xue ji suan zhong chang yong you xian cha fen fa lai qiu jie ge lei pian wei fen fang cheng ,ta shi bei an fan ying yong de shu zhi fang fa zhi yi .ben wen zhong wo men yan jiu qiu jie fei xian xing Schr?dingerfang cheng de ju you gao jing du de shu zhi fang fa ,di chu ji chong you xian cha fen ge shi .fei xian xing Schr?dingerfang cheng zai wu li ying yong fang mian qi zhao hen you li de zuo yong ,you ji shi zai liu ti li xue 、fei xian xing guang xue 、liang zi li xue deng fang mian bei an fan ying yong .ran er ,duo wei fei xian xing Schr?dingerfang cheng he fen shu jie Schr?dingerfang cheng de zhun que jie hen nan de dao .yin ci ,jian li yi xie shou heng de you xian cha fen ge shi lai qiu jie duo wei fei xian xing Schr?dingerfang cheng he fen shu jie Schr?dingerfang cheng bian cheng le yi xiang chong yao ren wu .dang qian ,gao jing du jin zhi cha fen ge shi you yu you zhao gao jing du he gao xiao lv de you dian ,yue lai yue shou dao guo nei wai yan jiu zhe de guan zhu .ben wen zhong ,dui yu duo wei fei xian xing Schr?dingerfang cheng ,wo men gou zao yi xie shou heng de gao jing du jin zhi cha fen ge shi bing fen xi cha fen ge shi de shou heng xing ji wen ding xing .dui yu fen shu jie Schr?dingerfang cheng ye gou zao chu ji chong gao jing du jin zhi cha fen ge shi ,bing dui suo jian li de ge shi jin hang le shu zhi li lun fen xi .zheng ge lun wen de ju ti yan jiu nei rong bao gua yi xia liu ge bu fen :di yi zhang ,wo men jie shao fei xian xing Schr?dingerfang cheng ji fen shu jie Schr?dingerfang cheng de yan jiu bei jing he guo nei wai yan jiu xian zhuang ,tong shi ye jie shao gao jing du jin zhi cha fen ge shi de fa zhan guo cheng .xu shu ben wen de zhu yao gong zuo ,zui hou hui gu jiang zai hou xu zhang jie zhong yao yong dao de yi xie ji ben zhi shi .di er zhang ,wo men fen bie gei chu le er wei he san wei fei xian xing Schr?dingerfang cheng de si jie jin zhi fen lie bu cha fen ge shi .zai ben zhang zhong ,wei ke fu fei xian xing wen ti yin qi de qiu jie kun nan ,wo men yong suan zi fen lie ji shu ba yuan fang cheng fen lie wei xian xing zi wen ti he fei xian xing zi wen ti .dui xian xing zi wen ti jian li shou heng de si jie jing du jin zhi cha fen ge shi ,fei xian xing zi wen ti ke yi bei jing que qiu jie .tao lun ge shi de wen ding xing 、shou heng xing he shou lian xing .shu zhi suan li yan zheng wo men suo gou zao de ge shi de jing que xing he you xiao xing .di san zhang ,wo men yan jiu san wei fei xian xing Schr?dingerfang cheng de shu zhi jie ,wei le jie jue duo wei yin qi de qiu jie kun nan ,jie ge fen lie bu fang fa fen bie gou zao si jie he liu jie jin zhi jiao ti fang xiang yin shi (ADI)cha fen ge shi ,bing zheng ming liang chong ge shi de mo tiao jian wen ding xing .tong guo shu zhi shi yan dui liang chong ge shi de li san shou heng xing zhi 、jing du he wen ding xing jin hang yan zheng .di si zhang ,wo men gei yi wei he er wei shi jian fen shu jie Schr?dingerfang cheng fen bie di chu si jie jin zhi cha fen ge shi he jin zhi ADIcha fen ge shi .shi jian fen shu jie Schr?dingerfang cheng han you α(α ∈(0,1))jie de Caputoshi jian fen shu jie dao shu .ben zhang zhong ,fen bie cai yong L1shu zhi gong shi he L1-2shu zhi gong shi jin shi Caputoshi jian fen shu jie dao shu ,dui kong jian fang xiang dao shu ,li yong si jie jin zhi cha fen gong shi .yong Fourierfen xi fa he shu xue gui na fa zheng ming le ge shi de wen ding xing ,bing tong guo yi xie shu zhi suan li yan zheng le li lun fen xi jie guo .di wu zhang ,zai yi you de yan jiu gong zuo ji chu shang ,wo men yan jiu qiu jie dai you Rieszfen shu jie dao shu de kong jian fen shu jie fei xian xing Schr?dingerfang cheng de shou heng xing fen lie bu Crank-Nicolsoncha fen ge shi .ci wai ,wo men hai gei chu le gai suan fa de wen ding xing he shou lian xing fen xi ,bing zheng ming le ge shi de zhi liang shou heng xing .zui hou ,tong guo shu zhi suan li lai yan zheng suan fa de gao xiao xing he li lun de zhun que xing .di liu zhang ,wo men gei chu ben wen gong zuo de zong jie he wei lai gong zuo de zhan wang .
论文参考文献
论文详细介绍
论文作者分别是来自新疆大学的热娜阿斯哈尔,发表于刊物新疆大学2019-07-23论文,是一篇关于多维非线性方程论文,分数阶方程论文,紧致差分格式论文,交替方向隐式差分格式论文,分裂步方法论文,稳定性论文,守恒性论文,新疆大学2019-07-23论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自新疆大学2019-07-23论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。
标签:多维非线性方程论文; 分数阶方程论文; 紧致差分格式论文; 交替方向隐式差分格式论文; 分裂步方法论文; 稳定性论文; 守恒性论文; 新疆大学2019-07-23论文;