卷积神经网络论文怎么写
2022-10-16阅读(944)
问:请问一下,无基础学习卷积神经网络需要多久?
- 答:卷积神经网络有以下几种应用可供研究: 1、基于卷积网络的形状识别 物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维图像作为三维图像的特例以及组成部分,因此二维图像的识别是三维图像识别的基础。 2、基于卷积网络的人脸检测 卷积神经网络与传统的人脸检测方法不同,它是通过直接作用于输入样本,用样本来训练网络并最终实现检测任务的。它是非参数型的人脸检测方法,可以省去传统方法中建模、参数估计以及参数检验、重建模型等的一系列复杂过程。本文针对图像中任意大小、位置、姿势、方向、肤色、面部表情和光照条件的人脸。 3、文字识别系统 在经典的模式识别中,一般是事先提取特征。提取诸多特征后,要对这些特征进行相关性分析,找到最能代表字符的特征,去掉对分类无关和自相关的特征。然而,这些特征的提取太过依赖人的经验和主观意识,提取到的特征的不同对分类性能影响很大,甚至提取的特征的顺序也会影响最后的分类性能。同时,图像预处理的好坏也会影响到提取的特征。
问:ccf推荐论文怎么引用
- 答:2文本推荐合适的标签是更好地组织和使用文本内容的一项有效手段,目前大部分标签推荐方法主要通过挖掘文本内容来进行推荐。然而,大部分数据信息并非独立存在,如语料库中的文本间的词共现关系可形成复杂的网络结构。以往研究表明,文本间的网络结构信息和文本内容信息可以分别从两个不同的角度对同一文本的语义进行概括,并且从两方面提取的信息可以互为补充和解释。基于此,提出一种同时对文本网络结构信息和文本内容信息进行建模的标签推荐方法。该方法首先使用图卷积神经网络(GCN)提取文本间网络的结构信息,然后使用循环神经网络(RNN)提取文本内容信息,最后使用注意力机制结合文本间网络结构信息和文本内容信息进行标签的推荐。与基于图卷积神经网络(GCN)的标签推荐方法、基于主题注意力的长短时记忆(TLSTM)神经网络的标签推荐方法等基线方法相比,提出的使用注意力机制结合网络结构信息与文本内容信息的标签推荐方法具有更好的性能。如在Mathematics Stack Exchange数据集上所提方法的准确率、召回率和F1值相较最优基线方法分别提高了2.3%、3.8%、7.0%。关键词标签推荐, 循环神经网络, 图卷积神经网络, 注意力机制, 网络结构信息, 文本内容
- 答:文本推荐合适的标签是更好地组织和使用文本内容的一项有效手段,目前大部分标签推荐方法主要通过挖掘文本内容来进行推荐。然而,大部分数据信息并非独立存在,如语料库中的文本间的词共现关系可形成复杂的网络结构。以往研究表明,文本间的网络结构信息和文本内容信息可以分别从两个不同的角度对同一文本的语义进行概括,并且从两方面提取的信息可以互为补充和解释。基于此,提出一种同时对文本网络结构信息和文本内容信息进行建模的标签推荐方法。该方法首先使用图卷积神经网络(GCN)提取文本间网络的结构信息,然后使用循环神经网络(RNN)提取文本内容信息,最后使用注意力机制结合文本间网络结构信息和文本内容信息进行标签的推荐。与基于图卷积神经网络(GCN)的标签推荐方法、基于主题注意力的长短时记忆(TLSTM)神经网络的标签推荐方法等基线方法相比,提出的使用注意力机制结合网络结构信息与文本内容信息的标签推荐方法具有更好的性能。如在Mathematics Stack Exchange数据集上所提方法的准确率、召回率和F1值相较最优基线方法分别提高了2.3%、3.8%、7.0%。
关键词
标签推荐, 循环神经网络, 图卷积神经网络, 注意力机制, 网络结构信息, 文本内容 - 答:该方法首先使用图卷积神经网络(GCN)提取文本间网络的结构信息,然后使用循环神经网络(RNN)提取文本内容信息,最后使用注意力机制结...
- 答:该方法首先使用图卷积神经网络(GCN)提取文本间网络的结构信息,然后使用循环神经网络(RNN)提取文本内容信息,最后使用注意力机制结...
问:卷积神经网络每层提取的特征是什么样的
- 答:卷积神经网络是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成。
图:卷积神经网络的概念示范:输入图像通过和三个可训练的滤波器和可加偏置进行卷积,滤波过程如图一,卷积后在C1层产生三个特征映射图,然后特征映射图中每组的四个像素再进行求和,加权值,加偏置,通过一个Sigmoid函数得到三个S2层的特征映射图。这些映射图再进过滤波得到C3层。这个层级结构再和S2一样产生S4。最终,这些像素值被光栅化,并连接成一个向量输入到传统的神经网络,得到输出。
一般地,C层为特征提取层,每个神经元的输入与前一层的局部感受野相连,并提取该局部的特征,一旦该局部特征被提取后,它与其他特征间的位置关系也随之确定下来;S层是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射为一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。
此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数,降低了网络参数选择的复杂度。卷积神经网络中的每一个特征提取层(C-层)都紧跟着一个用来求局部平均与二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力。