论文摘要
支持向量机(Support Vector Machine,SVM)是近年来受到广泛关注的一类学习机器,它以统计学习理论(Statistical Learning Theory,SLT)为基础,具有简洁的数学形式、标准快捷的训练方法和良好的泛化性能,已广泛应用于模式识别、函数估计和时间序列预测等数据挖掘问题。但在SVM的研究中仍然存在许多问题尚待解决,例如:模型选择问题、针对大规模训练集的学习效率问题等。目前,在SVM的学习训练过程中,几乎所有研究都以单个支持向量机作为训练器,关于SVM的多学习器学习方法研究甚少。集成学习(EnsembleLearning)技术作为一种有效的多学习器学习方法已获得许多有价值的结果,将集成学习技术引入到SVM学习中,可以更好地提高SVM的泛化能力,因此,基于集成学习的SVM学习方法研究成为目前SVM研究中一个重要的方向。本文对SVM集成学习方法进行了系统地研究,主要内容如下:(1)对于集成学习技术的理论分析、实现方法的设计和实际应用进行了系统地研究。(2)对现有的集成学习方法进行了简要介绍,分析了两种经典的集成学习方法Bagging和Boosting、比较了两者的优缺点、考察了它们的生效机制。(3)提出两种回归SVM集成学习方法,即:基于Bagging的回归SVM集成学习方法和基于参数变换的回归SVM集成学习模型。(4)提出了一种回归SVM选择性集成学习方法,通过采用特定阈值选择合适的子SVM,从而进一步提高整个SVM的效率;分析了阈值变化对选择性集成学习的影响、集成规模与选择性集成规模的关系、集成规模与集成学习效果的关系。(5)通过标准数据集和真实数据集对本文提出的三种方法进行验证,取得了预期效果。本文对回归SVM集成学习方法和选择性集成学习方法进行了初步的研究与探索,作为SVM研究中的一个新问题,本文的研究成果不仅具有重要的理论意义,而且对于实际问题具有直接的应用价值。
论文目录
相关论文文献
- [1].基于人工鱼群算法的孪生支持向量机[J]. 智能系统学报 2019(06)
- [2].基于改进支持向量机的温室大棚温度预测[J]. 科技创新与应用 2020(10)
- [3].结构化支持向量机研究综述[J]. 计算机工程与应用 2020(17)
- [4].支持向量机理论及应用[J]. 科学技术创新 2019(02)
- [5].加权间隔结构化支持向量机目标跟踪算法[J]. 中国图象图形学报 2017(09)
- [6].多分类孪生支持向量机研究进展[J]. 软件学报 2018(01)
- [7].模糊型支持向量机及其在入侵检测中的应用[J]. 科技创新与应用 2018(11)
- [8].从支持向量机到非平行支持向量机[J]. 运筹学学报 2018(02)
- [9].支持向量机的基本理论和研究进展[J]. 长江大学学报(自科版) 2018(17)
- [10].孪生支持向量机综述[J]. 计算机科学 2018(11)
- [11].一种新的基于类内不平衡数据学习支持向量机算法[J]. 科技通报 2017(09)
- [12].分段熵光滑支持向量机性能研究[J]. 计算机工程与设计 2015(08)
- [13].有向无环图-双支持向量机的多类分类方法[J]. 计算机应用与软件 2015(11)
- [14].基于支持向量机的股票价格预测模型研究与应用[J]. 课程教育研究 2016(28)
- [15].灰狼优化的混合参数多分类孪生支持向量机[J]. 计算机科学与探索 2020(04)
- [16].基于属性约简—光滑支持向量机的中小企业信息化评价研究[J]. 软件工程 2020(07)
- [17].基于稀疏孪生支持向量机的人脸识别[J]. 信息技术 2020(07)
- [18].基于总类内分布的松弛约束双支持向量机[J]. 济南大学学报(自然科学版) 2018(04)
- [19].基于多分类支持向量机的评估模型研究[J]. 数学的实践与认识 2017(01)
- [20].改进的支持向量机在微博热点话题预测中的应用[J]. 现代情报 2017(03)
- [21].多核在线支持向量机算法研究及应用[J]. 宜宾学院学报 2017(06)
- [22].基于改进遗传算法的支持向量机参数优化方法[J]. 计算机与现代化 2015(03)
- [23].一种层次粒度支持向量机算法[J]. 小型微型计算机系统 2015(08)
- [24].自训练半监督加权球结构支持向量机多分类方法[J]. 重庆邮电大学学报(自然科学版) 2014(03)
- [25].四类基于支持向量机的多类分类器的性能比较[J]. 聊城大学学报(自然科学版) 2014(03)
- [26].一种模糊加权的孪生支持向量机算法[J]. 计算机工程与应用 2013(04)
- [27].一种采用粗糙集和遗传算法的支持向量机[J]. 山西师范大学学报(自然科学版) 2013(01)
- [28].基于在线支持向量机的无人机航路规划技术[J]. 电光与控制 2013(05)
- [29].贪婪支持向量机的分析及应用[J]. 计算机工程与应用 2012(24)
- [30].一种改进的双支持向量机[J]. 辽宁石油化工大学学报 2012(04)