具时滞的单种群模型和SIS模型的稳定性和分支分析

具时滞的单种群模型和SIS模型的稳定性和分支分析

论文摘要

传染病动力学是对传染病进行理论性定量研究的一种重要方法。它根据种群生长的特性、疾病发生的特性、疾病发生及在种群内传播、发展规律,以及与之有关的社会因素,建立能反映传染病动力学特性性态的定性、定量分析和数值模拟,来显示疾病的发展过程,揭示其流行规律,预测其变化发展趋势,分析疾病流行的原因和关键因素,寻求对其预防和控制的最优策略,为人们防治决策提供理论基础和数量依据。传染病模型通常是研究其平衡状态(无病平衡状态和地方病平衡状态)的存在性及其稳定性,周期解的存在性,分支的存在性,建立疾病传染的基本再生数。正周期解的存在说明疾病不会消失,它会周期循环变化;分支的存在说明疾病传播的敏感性,一些因素发生微小变化就可以导致疾病流行状况的最根本变化。比如Hopf分支的出现则标志着某个影响疾病流行的因素的微小变动可能导致疾病流行情况的巨大变化,疾病最终可能由稳定到一个特殊的平衡状态变成周期性地爆发。本文考虑了以一类成年种群增长模型为基础的具时滞的SIS模型传染病模型。首先,我们以成熟期为分支参数,通过分析特征方程的根的分布给出了地方病平衡点的稳定性和Hopf分支的存在性的充分条件,进而应用规范型方法和中心流形理论,得到了关于确定Hopf分支的方向和分支周期解的稳定性和的计算公式。最后我们用MATLAB软件给出几组数值模拟结果以支持我们的理论分析结果。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 泛函微分方程Hopf 分支理论的发展与研究现状
  • 1.2 传染病模型的研究意义及国内外研究概况
  • 1.3 传染病模型稳定性及分支的研究现状
  • 1.4 本文的主要工作
  • 第2章 预备知识
  • 2.1 几何准则
  • 2.2 Hopf 分支存在条件
  • 第3章 成年种群增长模型
  • 3.1 引言
  • 3.2 平衡点的稳定性
  • 3.3 本章小结
  • 第4章 SIS 传染病模型
  • 4.1 引言
  • 4.2 稳定性和Hopf 分支的存在性
  • 4.3 Hopf 分支的方向和周期解的稳定性
  • 4.4 数值模拟
  • 4.5 本章小结
  • 结论
  • 参考文献
  • 攻读硕士学位期间发表的学术论文
  • 致谢
  • 个人简历
  • 相关论文文献

    • [1].具有垂直传染和出生率密度依赖的肺结核传染病模型[J]. 佳木斯大学学报(自然科学版) 2016(06)
    • [2].一类离散传染病模型的动力学分析[J]. 广东海洋大学学报 2017(01)
    • [3].一类有限资源下的非光滑传染病模型[J]. 宝鸡文理学院学报(自然科学版) 2017(01)
    • [4].潜伏期和染病期均传染且具脉冲接种的传染病模型[J]. 信阳师范学院学报(自然科学版) 2017(03)
    • [5].出生率密度依赖的肺结核传染病模型[J]. 生物数学学报 2017(02)
    • [6].仓室传染病模型基本再生数的发展简介[J]. 兰州大学学报(自然科学版) 2016(03)
    • [7].一类具有常数感染周期的传染病模型的全局稳定性分析[J]. 数学学习与研究 2017(07)
    • [8].基于传染病模型的恐慌情绪研究[J]. 系统科学与数学 2019(04)
    • [9].一类考虑捕捞和避难的生态传染病模型[J]. 太原学院学报(自然科学版) 2018(03)
    • [10].随机多种群易感者、感染者和移出者传染病模型的阈值(英文)[J]. 控制理论与应用 2016(10)
    • [11].一类具有非线性发生率的时滞SIRS传染病模型[J]. 宿州学院学报 2017(06)
    • [12].具有时滞的生态-传染病模型的定性分析[J]. 数学的实践与认识 2015(13)
    • [13].离散SIRS传染病模型的持久性和灭绝性分析[J]. 应用数学学报 2014(03)
    • [14].一类具有接种疫苗和再次感染的传染病模型分析[J]. 数学的实践与认识 2011(14)
    • [15].很想出谋划策[J]. 成才与就业 2020(03)
    • [16].一类具有潜伏期的年龄结构的传染病模型及其防控对策[J]. 新疆师范大学学报(自然科学版) 2020(01)
    • [17].一类基于心理作用的SIRS传染病模型[J]. 吉林大学学报(理学版) 2020(03)
    • [18].一类具扩散的传染病模型的稳定性分析[J]. 广西师范大学学报(自然科学版) 2018(02)
    • [19].基于两斑块和迁移的SIRS传染病模型的稳定性分析[J]. 应用数学 2017(02)
    • [20].具有接种和时滞的生态传染病模型渐近性态(英文)[J]. 纺织高校基础科学学报 2015(04)
    • [21].一类具有标准发生率的SIRS传染病模型分岔分析[J]. 动力学与控制学报 2015(02)
    • [22].一类人禽间传染病模型的动力学分析(英文)[J]. 生物数学学报 2013(04)
    • [23].一类病传染病模型的基本再生数研究[J]. 科技视界 2013(07)
    • [24].食饵具有疾病的非自治生态传染病模型的持久性[J]. 新疆大学学报(自然科学版) 2012(04)
    • [25].一类传染病模型[J]. 应用数学 2011(03)
    • [26].一类捕食者和食饵都染病的四维生态-传染病模型的稳定性[J]. 北华大学学报(自然科学版) 2011(02)
    • [27].具有分布时滞的生态传染病模型的持久性分析(英文)[J]. 新疆大学学报(自然科学版) 2009(03)
    • [28].一类具有脉冲出生的生态传染病模型的研究[J]. 太原理工大学学报 2008(S2)
    • [29].媒体报道影响下具有非线性感染率的传染病模型研究[J]. 洛阳师范学院学报 2019(11)
    • [30].一类接种率受媒体报道影响的传染病模型分析[J]. 西南师范大学学报(自然科学版) 2020(05)

    标签:;  ;  ;  ;  

    具时滞的单种群模型和SIS模型的稳定性和分支分析
    下载Doc文档

    猜你喜欢