论文摘要
视频跟踪是计算机视觉领域的一个基础的研究课题,也一个非常具有挑战性的研究方向。在当前的现实生活中,视频跟踪技术已经在各种领域内得到了广泛的应用,其中包括视频监控、军事工程、交通管理、智能机器人和人机交互等,具有很高的学术研究和应用价值。单摄像头的视频跟踪系统存在很多无法解决的问题,其中包括目标遮挡、摄像头视野有限、不能进行全方位的跟踪等问题,而多摄像头的跟踪系统能够很好的克服这些问题。因此,多摄像头目标检测与跟踪正在成为研究的热点。本文在前人研究的基础上,重点研究了如何提高多摄像头之间目标确认的精度,以及如何在保证对目标准确跟踪的条件下,降低整个系统的数据传输量和计算量。本文首先分析多摄像头跟踪领域中,摄像头之间目标确认问题,提出了一种在基于平面单应性的确认技术中,引入目标距离特征的新方法。由于目标距离不受平面单应性约束条件的影响,加入目标距离特征能有效的提高摄像头之间目标的确认精度。实验结果表明,在基于平面单应性的确认算法中,增加目标距离特征后,确认精度得到了一定的提高。为了有效地减少多摄像头跟踪系统的数据传输量和计算量,本文还提出了一种基于最优摄像头选择的跟踪算法,并从理论分析和实验上,对该算法的性能进行了评估。实验结果显示,该算法在不降低对目标跟踪准确度的情况下,有效地降低整个系统的数据传输量和计算量。