论文摘要
目前,桥梁系统的检测已经成为一个广泛关注的问题。而有限元模型修正是桥梁健康监测的重要内容之一,由于初始的简化假设,边界条件模拟的差异以及非结构构件等因素的影响,建立的有限元模型总与实际有出入,计算值和试验测量值不能很好的一致,这给桥梁的状态评估、剩余寿命的预测增加了困难。因此桥梁有限元模型修正技术的研究越来越引起科学工作者和工程师的重视,对模型修正技术的研究也显得迫在眉睫。本文在秦皇岛山桥集团试验车间的帮助,通过一组矩形截面简支梁,一组T形截面简支梁,及一组简支加悬臂梁模态试验对模型修正的关键问题作了系统的研究,并对实际工程儒林桥进行了传感器优化布置和模型修正。研究主要包括以下几方面的内容:一,通过理论迁移,将广泛应用于数学,电子,机械制造的系统灵敏度理论应用于桥梁有限元模型的修正和测点优化,通过与桥梁模型结构的特点相结合,解决了桥梁模态灵敏度分析的问题。二,运用灵敏度理论,初步研究了模态试验中传感器的优化配置问题。文中首先采用有效独立法对传感器进行了优化布置,然后结合列主元QR分解法进一步优化了测点的分布,使得试验数据和理论数据具有良好的相关性,使得测量得到的振型具有线性无关,正交性和可视性等特点。从而为论文的主要工作打下良好的基础。三,通过算例和利用模态试验测得的模态数据研究了基于模态参数灵敏度分析的有限元模型修正的相关问题。通过这些研究发现模态频率+MAC值修正的模型质量最好;参与模型修正的参数并不是越多,模型修正的质量就越好,应该选择灵敏度矩阵可逆条件数较大的参数参与模型修正;待修正参数为局部变量时模型修正的质量比全局变量好。四,对实际工程儒林桥进行了测点优化和有限元模型的灵敏度分析,在修正先后应用ADINA有限元建模分析,导出了不同分析参数下,精确程度的显著对比。对相近梁桥工程具有一定借鉴意义。
论文目录
摘要ABSTRACT1 绪论1.1 引言1.2 有限元模型修正技术的研究现状1.3 模型修正的主要方法1.3.1 最优矩阵法1.3.2 神经网络法1.3.3 基于静态测量值的模型修正方法1.3.4 统计的方法1.3.5 优化的方法1.4 模型修正存在的若干关键问题1.5 本论文主要研究工作2 混凝土梁模态试验概况及测点分析2.1 测点优化布置现状及理论2.1.1 测点优化配置的准则简介2.1.2 测点优化配置的方法2.2 本文应用的测点优化布置基本理论2.2.1 有效独立法2.3 基于列主元QR分解的MAC法2.4 试验概况及传感器布置3 基于模态灵敏度分析的有限元模型修正3.1 模态参数的灵敏度分析3.1.1 基本理论3.1.2 灵敏度矩阵的求解3.2 刚度矩阵及质量矩阵关于修正参数的偏导数3.3 试验模型与有限元模型的相关性分析3.4 基于Bayesian的模型修正3.5 试验梁模态概况及试验结果分析3.5.1 试验模态概况3.6 各试验梁试验结果分析3.7 试验梁模态参数的相关性分析、灵敏度分析及有限元模型修正3.7.1 矩形截面简支梁3.7.2 T形截面简支梁4 桥梁模型灵敏度优化的工程应用4.1 工程背景4.2 原始检测资料4.2.1 桥梁检测资料4.3 桥梁ADINA有限元模型分析4.3.1 基本假定4.3.2 梁体振动模态分析4.4 基于有效独立法及联合算法的桥梁测点优化4.4.1 基于有效独立法的传感器优化布置4.4.2 儒林桥的传感器优化布置4.5 有限元模型的灵敏度优化分析4.5.1 相关分析、参数的选择、目标函数的确定4.5.2 灵敏度分析4.6 本章小结5 结论与展望参考文献致谢攻读学位期间已发表的学术论文及科研成果
相关论文文献
标签:系统灵敏度论文; 模态分析论文; 有限元模型修正论文;