基于蚁群算法的参考天空分类优化方法研究

基于蚁群算法的参考天空分类优化方法研究

论文摘要

近些年来,能源问题越来越趋于紧张,如果可以充分的利用自然光,对节约能源将起到十分重要的意义。而天空亮度分布正是利用自然光的一个非常重要的因素。本文将在国内外对天空亮度分布模型的研究成果基础上,基于我国光气候条件下的观测资料,从影响天空亮度分布的气象参数出发,采用蚁群算法来研究天空分类方法,进而得到相应的天空亮度分布模型,为采光设计提供理论依据。蚁群算法是一种仿生类的群体优化算法,该算法具有较为优秀的分布式求解能力。在这些年的发展中,算法在组合优化问题的求解上取得了比较大的成就,在国内外都有一定的影响力。但是算法本身的离散性本质限制了其在连续空间优化问题中的应用,由于本文所要研究的天空亮度分布模型参数优化问题是一个连续空间的优化问题,那么如何能合理的将蚁群算法应用到连续空间优化问题中去将成为本文研究的一个重点。蚁群算法又是一种概率选择算法,蚂蚁的移动跟信息素的分布状况息息相关,所以要构建一个性能优越的蚁群算法,设计一个合理的信息素分布模型是关键。在蚁群算法优化连续空间问题上,本文提出了两种不同的优化算法,一种是基于网格划分的连续蚁群算法(DACO),另外一种是基于正态分布的连续蚁群算法(GACO)。DACO借鉴了基本蚁群算法优化离散问题的思想,将解空间的每一维都划分成网格,在每一维上,信息素离散的分布在各个网格点上,蚂蚁从起始点出发,根据各维网格点上信息素的含量,逐维选择经过的网格点,经过N次选择之后,最终到达终点,构建出可行解。经过多个经典的函数测试,该算法适合求解维度较低,并且较为简单的优化问题。与DACO不同,GACO的信息素是连续分布的,并且在解空间的各个维上都呈正态分布。GACO通过对信息素分布函数进行采样来完成蚂蚁的状态转移,通过更新最优蚂蚁所在位置,以及信息素分布函数的宽度值来更新信息素分布。为了改善算法寻找优秀解的能力,GACO引入了模式搜索策略。经过多个经典测试函数测试,GACO具有较好的求解高维复杂问题的能力。最后,通过仿真实验,利用实际观测数据,结合GACO算法来对天空亮度分布模型参数进行优化。实验结果表明,GACO能够有效的解决该优化问题。总之,本文对连续蚁群算法进行了深入的研究和分析,并且提出了两种连续蚁群算法,并且将GACO应用到了实际问题中。论文最后对所做的工作进行了总结和展望。

论文目录

  • 摘要
  • ABSTRACT
  • 1 绪论
  • 1.1 研究现状
  • 1.1.1 蚁群算法研究现状
  • 1.1.2 天空亮度分布研究现状
  • 1.2 课题背景、方法和意义
  • 1.2.1 课题背景及意义
  • 1.2.2 研究目的
  • 1.2.3 技术路线
  • 1.3 拟解决的关键问题
  • 1.4 本文内容
  • 1.5 本章小结
  • 2 基本蚁群算法
  • 2.1 旅行商问题
  • 2.2 蚁群算法的起源
  • 2.2.1 蚂蚁觅食行为分析
  • 2.2.2 蚂蚁系统的数学模型
  • 2.3 蚁群算法的发展
  • 2.3.1 最大最小蚂蚁系统(MMAS)
  • 2.3.2 蚁群系统(ACS)
  • 2.3.3 蚁群优化通用框架(ACO)
  • 2.4 蚁群算法的局限性
  • 2.5 蚁群算法的应用现状
  • 2.6 本章小结
  • 3 连续空间蚁群优化算法的研究
  • 3.1 连续空间优化问题的定义
  • 3.2 蚁群求解连续优化问题面临的挑战
  • 3.3 基于网格划分的连续蚁群算法(DACO)
  • 3.3.1 连续空间网格划分及信息素分布
  • 3.3.2 蚂蚁解的构造
  • 3.3.3 信息素更新规则
  • 3.3.4 算法的一般步骤
  • 3.4 基于正态分布的连续蚁群算法(GACO)
  • 3.4.1 连续空间中蚂蚁觅食行为分析
  • 3.4.2 信息素连续分布模型
  • 3.4.3 状态转移规则
  • 3.4.4 信息素更新规则
  • 3.4.5 模式搜索策略
  • 3.4.6 GACO 的一般步骤
  • 3.5 性能测试与分析
  • 3.5.1 无约束标准测试函数
  • 3.5.2 性能测试
  • 3.6 算法参数选择
  • 3.6.1 DACO 参数选择
  • 3.6.2 GACO 参数选择
  • 3.7 本章小结
  • 4 GACO 在参考天空亮度分布研究中的应用
  • 4.1 参考天空
  • 4.2 CIE 天空相对亮度分布模型、天空分类
  • 4.2.1 CIE 天空亮度分布模型数学表达式
  • 4.2.2 CIE 一般天空分类
  • 4.3 CIE 天空分类参数的优化
  • 4.3.1 天顶亮度转换系数
  • 4.3.2 蚁群算法对天空分类参数的优化
  • 4.4 本章小结
  • 5 总结与展望
  • 5.1 工作总结
  • 5.2 工作展望
  • 致谢
  • 参考文献
  • 附录
  • A. 作者在攻读学位期间发表的论文目录
  • B. 作者在攻读学位期间参与的科研项目
  • 相关论文文献

    标签:;  ;  ;  ;  ;  

    基于蚁群算法的参考天空分类优化方法研究
    下载Doc文档

    猜你喜欢