时滞微分方程的定性研究

时滞微分方程的定性研究

论文摘要

微分方程是近代数学的一个重要的学科分支,随着现代化社会的发展,无论是在工程、宇航等自然科学领域还是在经济、金融等社会科学领域,都有着广泛的应用。在力学、物理学、生态学、生物学、经济学等多种应用技术中往往用时滞微分方程比常微分方程来刻划更符合实际。国内外学者也对时滞泛函微分方程的基本理论及定性理论进行了卓有成效的研究。有关时滞泛函微分方程的研究无论在理论上还是在应用上都具有非常重要的意义。开展这方面的研究,一方面将丰富和发展时滞泛函微分方程理论,另一方面也为一些问题的实际应用提供必要的理论基础。 本文就时滞微分方程定性理论中的一些问题作了深入系统的研究,主要围绕以下几个方面展开: 1、时滞微分方程周期解的存在性问题。本文第二章第一节,第三章第二节中给出了描述两个种群的捕食系统的时滞微分方程模型,并利用重合度理论中的延拓定理给出了周期解存在的充分条件。利用重合度研究周期解的多重性的问题已有许多工作。第三章第二节在研究具非单调功能性反应的捕食一食饵系统时,通过选择不同的相空间,区域划分,解的先验估计等手段,克服了计算算子拓扑度的困难,保证了系统至少有两个正周期解。这两类系统的正周期解的存在性不仅具有生态学应用价值,同时对时滞泛函微分方程理论研究也非常重要。第二章第二节利用非紧性测度的k-集压缩原理及某些分析技巧研究了二阶时滞微分方程,推广与改进了一些相关结果。第三章第一节利用锥映射不动点定理研究了时滞微分方程周期解的多重性问题,得到了多个正解存在的充分条件,所用的手段是比较新的。 2.时滞微分方程周期解的存在性,唯一性及全局吸引性。第四章利用比较原理及不动点定理得到了时滞微分方程的正周期解存在性定理。一方面在非时滞的情况下通过构造比较函数,利用Brouwer不动点定理得到非时滞微分方程正周期解的存在唯一性,及周期解全局吸引的充分条件。另一方面,在时滞存在的情况下利用周期性与非时滞情况相比较得到周期解的存在性,唯一性。由于此时构造Lyapunov泛函比较困难,

论文目录

  • 中文摘要
  • 英文摘要
  • 中文目录
  • 英文目录
  • 主要符号表
  • 第一章 序言
  • 1.1 研究背景
  • 1.2 本文主要工作及内容安排
  • 1.3 预备知识
  • 第二章 时滞微分方程周期解的存在性
  • 2.1 一类时滞捕食系统周期解的存在性
  • 2.2 一类时滞微分方程的周期解
  • 第三章 时滞微分方程多个周期解的存在性
  • 3.1 时滞微分方程多个周期解的存在性
  • 3.2 时滞微分系统多个周期解的存在性
  • 3.2.1 引言
  • 3.2.2 单调情形
  • 3.2.3 非单调情形
  • 3.2.4 应用
  • 第四章 时滞微分方程周期解的存在性唯一性与全局吸引性
  • 4.1 引言
  • 4.2 非时滞微分方程周期解的存在性唯一性及全局吸引性
  • 4.3 时滞微分方程周期解的存在性唯一性及全局吸引性
  • 第五章 积分方程的渐近稳定性与全局吸引性
  • 5.1 引言
  • 5.2 积分方程解的全局吸引性
  • 5.3 积分方程解的渐近稳定性
  • 5.4 应用
  • 总结
  • 致谢
  • 参考文献
  • 攻读博士学位期间的主要研究成果
  • 承诺书
  • 相关论文文献

    • [1].时滞微分方程国际研讨会[J]. 国际学术动态 2013(03)
    • [2].二阶中立型时滞微分方程的振动条件[J]. 佳木斯大学学报(自然科学版) 2017(01)
    • [3].非线性多比例延迟微分方程的稳定性分析[J]. 洛阳师范学院学报 2017(02)
    • [4].一类脉冲时滞微分方程的动力学分析[J]. 桂林电子科技大学学报 2015(06)
    • [5].带参数的四阶时滞微分方程的边值问题[J]. 哈尔滨师范大学自然科学学报 2016(02)
    • [6].一类二阶时滞微分方程周期解的存在性[J]. 黑龙江大学自然科学学报 2014(06)
    • [7].带参数的二阶时滞微分方程的边值问题[J]. 哈尔滨师范大学自然科学学报 2015(05)
    • [8].二阶时滞微分方程边值问题的正解[J]. 淮阴师范学院学报(自然科学版) 2013(04)
    • [9].一类二阶时滞微分方程多个周期解的存在性[J]. 应用数学学报 2016(04)
    • [10].具有简单零特征根的时滞微分方程的分支分析[J]. 科技视界 2016(06)
    • [11].一阶非线性时滞微分方程正周期解的存在性[J]. 四川师范大学学报(自然科学版) 2015(02)
    • [12].关于非线性退化时滞微分方程解的研究[J]. 佳木斯大学学报(自然科学版) 2015(04)
    • [13].二阶时滞微分方程的振动条件[J]. 平顶山学院学报 2015(05)
    • [14].一阶时滞微分方程正周期解的存在性[J]. 四川师范大学学报(自然科学版) 2014(05)
    • [15].一类四阶时滞微分方程的稳定性和分支分析(英文)[J]. 应用数学 2013(03)
    • [16].一类二阶时滞微分方程非自治情况下的有界性[J]. 现代计算机(专业版) 2013(22)
    • [17].一阶非线性时滞微分方程周期解的存在性[J]. 太原师范学院学报(自然科学版) 2012(04)
    • [18].一种求解时滞微分方程的小波方法[J]. 兰州大学学报(自然科学版) 2011(01)
    • [19].一类脉冲时滞微分方程的周期正解的存在性[J]. 太原师范学院学报(自然科学版) 2011(02)
    • [20].一类高维时滞微分方程正周期解的存在性[J]. 吉林大学学报(理学版) 2011(05)
    • [21].一类非线性脉冲时滞微分方程的概周期解[J]. 玉林师范学院学报 2011(05)
    • [22].一类二阶半线性时滞微分方程解的振动性质[J]. 数学的实践与认识 2010(01)
    • [23].一类二阶时滞微分方程的多重周期解[J]. 佛山科学技术学院学报(自然科学版) 2010(02)
    • [24].二阶脉冲多时滞微分方程的强迫振动[J]. 韩山师范学院学报 2010(03)
    • [25].一类中立型退化时滞微分方程的周期解[J]. 数学理论与应用 2010(04)
    • [26].一类变时滞微分方程正周期解的全局吸引性[J]. 南华大学学报(自然科学版) 2010(04)
    • [27].一类二阶时滞微分方程周期解的存在性[J]. 甘肃联合大学学报(自然科学版) 2009(01)
    • [28].高阶时滞微分方程周期解的存在性[J]. 合肥学院学报(自然科学版) 2009(02)
    • [29].带强迫项的二阶脉冲时滞微分方程的振动性[J]. 海南师范大学学报(自然科学版) 2009(02)
    • [30].一类脉冲时滞微分方程的振动性[J]. 湖南工业大学学报 2009(06)

    标签:;  ;  ;  ;  ;  ;  ;  

    时滞微分方程的定性研究
    下载Doc文档

    猜你喜欢