多层搅拌式生物反应器内溶液流变性质对流场特性影响的研究

多层搅拌式生物反应器内溶液流变性质对流场特性影响的研究

论文摘要

目前计算流体力学(CFD)方法已经在生物过程反应器的设计和放大过程得到了应用。但是CFD方法与生物反应过程模型相结合来预测生物反应过程,并实现过程优化与放大是有困难的。反应器内多相流的流动、混合和传递过程是复杂和多维的,然而生物反应器内非牛顿型的发酵体系的流体动力学行为则更为复杂。本文以多层搅拌式生物反应器为对象,开展了单相、以及不同溶液中的气液两相流的实验流体力学与计算流体力学研究。采用角度解析的大涡PIV流场测试技术发现径流RT和HBT桨在桨叶的后方形成一对相反方向的尾涡,而翼型WHHd和WHu桨在桨叶后方形成一个尾涡。并且发现角度解析的最大湍动能的值约为时间平均的最大湍动能的2倍,最大湍动能耗散率约为时间平均的最大湍动能耗散率的3.5倍。实验结果发现湍能耗散率积分值依赖于模型参数Cs,当取Cs=0.12,大涡PIV方法得到的湍动能耗散率体积积分的功率与扭矩的测得的功率便能相等。3RT桨的桨叶区的功率占22.1%,桨叶排出区占45.2%,主流区占32.7%。对于上翻操作的3WHu组合的桨叶区的功率占39.2%,桨叶排出区占23.3%,主流区占37.5%。组合桨中的每层桨都具有自己的特征。RT桨的最大湍动能耗散率与平均的湍动能耗散率的比值(εmax/εavg)的平均值为18.6,HBT桨的εmax/εavg为26.9~34.1,WHd桨的εmax/εavg的平均值为22.8,WHu桨的εmax/εavg的值为14.7~23.1。空气-水溶液两相体系中,在低表观气速时(通气量为0.2vvm)上翻型搅拌器的传质能力优于下压型搅拌器,3WHu的传质系数比HBT+2WHd高53%, HBT+2WHu和3RT的传质能力居中。而表观气速较高时(通气量为1.0vvm),在相同的比功率输入情况下所有搅拌组合的传质能力相近。开发的三电导探针测得了局部的气含率表明:对于3RT,最高的气含率位于底层桨叶排出区,其次是中层和顶层桨排出流的上下方靠近壁面的位置。HBT+2WHd的底层桨的气含率与RT桨相似,主体区气含率分布比较均匀。HBT+2WHu和3WHu组合中,两层上翻型桨叶之间的气含率较高,项层桨上方的气含率相对较低。气泡的速度场分布表明在通气情况下,RT桨同样形成两个循环,但下方的循环比上方的更靠近器壁。在搅拌控制的条件下,混合时间随着通气量的增加而增加。总的来说,上翻型桨叶组合3WHu和HBT+2WHu组合的传质和混合特性是比较好的。采用低浓度的CMC溶液替代菌丝发酵液来研究反应器内气泡大小和传质特性。发现相同功率输入时,上翻操作的桨型组合的气含率要高于下压操作以及3RT组合产生的气含率,气含率εG∝(正比于)(PG/V)0·3VG0.62。相同的通气功率下,Sauter平均直径大小依次是:3Whu>HBT+2WHu>HBT+2WHd>3RT,而相界面积大小排序是:3RT> HBT+2WHd>HBT+2WHu>3Whu,这是因为上翻桨叶气泡的聚并现象比较严重,Sauter平均直径d32∝(PG/V),)-0.12μGa0.32εG0.14,相间面积a∞(PG/V)-0.4VG0.5μa-0.5。低浓度的CMC溶液上翻操作的桨型组合的传质能力最好,但是随着粘度的增加,上翻桨叶组合的传质能力下降较快,气液传质系数kLα∝=(PG/V)0.5VG0.45μα-0.78。WHu、HBT+2WHu的kL是3RT、HBT+2WHd的kL的1.5-2倍,液相氧传质系数kL∝=(PG/V)0.11μα-0.24。气液传质依赖于桨型结构性质,实质是取决于不同桨型结构产生不同的流场,与物性一起决定了气泡的动力学和传质性能。本文研究发现高粘黄原胶溶液要达到相同功率消耗,小直径桨型组合的转速随着浓度的增加而增加,而大直径桨型的转速随着浓度的增加而降低。局部kLα分布发现黄原胶溶液的浓度为1.Owt%时,小直径桨型组合罐内的流体混合较好,kLα分布比较均匀,但随黄原胶浓度增加时壁面基本上变成传递的死区。而大直径桨型组合除了罐底部区域,kLa基本分布比较均匀,但是随着浓度的增加,大直径桨型组合基本丧失了气体分散的能力。实验发现桨型组合的平均kLa值大小排序为3RT> HBT+2WHu> HBT+2WHd> EG> HBT+2MIG> HBT+DHR。且发现功率与表观粘度对kLα影响较大,通气量对kLα的影响较小。小直径桨组合的混合时间要大于大直径桨叶的组合,同时也发现粘度对混合时间的影响要大于功率消耗对混合时间的影响。采用不同桨型组合研究流场特性对黑曲霉产糖化酶的发酵实验的影响。结果发现保证OUR趋势一致的情况下,三种桨型最终的转速3WHu>3RT> HBT+2WHu,对应的功率输入是3RT>3WHu> HBT+2WHu。而最终3RT的菌体酶活是最低的,上翻式桨叶组合HBT+2WHu和3WHu的菌体酶活比较接近。3RT由于高剪切而延迟菌球出现的时间并且菌球的浓度较低,上翻式桨叶组合由于较小的剪切,其菌球出现早而且其浓度也大于平叶桨的菌球浓度。发酵过程的发酵液流变特性的测试表明HBT+2WHu的表观粘度要低于3RT罐内的表观粘度。这也说明菌球的形成确实有利于降低发酵液的黏度,促进反应器的流动性,从而提高了产酶效率。建立了HBT+2WHu桨型组合的发酵过程kLa关联式。这些研究结果为未来的工艺优化及放大提供了有益的线索和理论指导。对于3RT的单相数值模拟,基于雷诺平均的湍流粘性模型计算得到速度值比PIV测试值的要大,湍动能的值都要比实验值低40-80%。而LES得到的流场与PIV测试的非常相似,包括速度与湍动能分布,排出区的湍动能比实验值约低15-30%,主流区的湍动能和PIV测的湍动能吻合很好。对于气液两相流的模拟采用CFD和PBM耦合求解。采用Ishii-Zuber曳力模型模拟形成的气含率较低,改用修正的Brucato曳力模型能获得比较满意的气含率。High Resolution对流差分格式与修正的Brucato曳力模型,增强系数4.5×10-6的模拟方法预测的气含率、相界面积以及kLα与实验值比较接近。kLα的增加是其通过增加曳力来增加相界面积,且认为CFD模拟的kLα值比实验值低的主要原因是低估了罐内的湍动能耗散率,其次低估了曳力。

论文目录

  • 摘要
  • Abstract
  • 第1章 前言
  • 1.1 课题背景
  • 1.2 实验研究现状
  • 1.2.1 流场测试技术
  • 1.2.2 功率消耗
  • 1.2.3 湍流特性
  • 1.2.4 气含率
  • 1.2.5 气泡大小
  • 1.2.6 气液相界面积
  • 1.2.7 气液传质
  • 1.3 CFD研究现状
  • 1.3.1 气液模拟
  • 1.3.2 PBM模型
  • 1.3.3 传质与反应
  • 1.4 本文的主要研究工作
  • 第2章 多层搅拌式反应器内单相流场的湍流和混合特性
  • 2.1 引言
  • 2.2 材料与方法
  • 2.2.1 实验设备
  • 2.2.2 PIV测试与分析
  • 2.2.3 混合时间的测定
  • 2.3 结果与讨论
  • 2.3.1 时间平均的流场
  • 2.3.2 角度解析的流场
  • 2.3.3 桨叶功率消耗
  • 2.3.4 平均与最大的比能量耗散率
  • 2.3.5 混合时间
  • 2.4 小结
  • 第3章 多层搅拌式反应器内水-空气两相流的混合与传质特性
  • 3.1 引言
  • 3.2 实验设备和方法
  • 3.2.1 实验装置
  • 3.2.2 混合时间的测定
  • 3.2.3 气液全局流动特性的测定
  • 3.2.4 电导探针技术
  • 3.3 结果与讨论
  • 3.3.1 功率消耗
  • 3.3.2 不同搅拌桨组合的流型
  • 3.3.3 混合效果
  • 3.3.4 气含率
  • 3.3.5 传质能力
  • 3.4 小结
  • 第4章 多层搅拌式反应器内CMC水溶液两相流的传质特性
  • 4.1 引言
  • 4.2 实验设备和方法
  • 4.2.1 实验设备和材料
  • 4.2.2 测试和分析方法
  • 4.3 结果与讨论
  • 4.3.1 功率消耗
  • 4.3.2 气含率
  • 4.3.3 气泡Sauter平均直径
  • 4.3.4 气液相界面积
  • 4.3.5 气液传质
  • 4.3.6 液相氧传质系数
  • 4.4 小结
  • 第5章 多层搅拌式反应器内黄原胶水溶液两相流的传质与混合特性
  • 5.1 引言
  • 5.2 实验设备和方法
  • 5.2.1 实验设备和材料
  • 5.2.2 测试和分析方法
  • 5.3 结果与讨论
  • 5.3.1 功率消耗
  • 5.3.2 流变性质对传质的影响
  • Lα对比'>5.3.3 桨型组合的kLα对比
  • 5.3.4 混合时间
  • 5.4 小结
  • 第6章 黑曲霉发酵产酶过程的反应器内流场特性的研究
  • 6.1 引言
  • 6.2 实验材料与方法
  • 6.2.1 菌种与培养基
  • 6.2.2 实验设备
  • 6.2.3 发酵工艺及参数检测
  • 6.3 结果与讨论
  • 6.3.1 发酵实验结果分析
  • 6.3.2 剪切与菌形分析
  • Lα建模'>6.3.3 发酵液的流变性质和kLα建模
  • 6.4 小结
  • 第7章 多层搅拌式反应器内流场特性的计算流体力学研究
  • 7.1 引言
  • 7.2 数值方法
  • 7.2.1 单相模拟
  • 7.2.2 气液两相模拟
  • 7.3 模拟设备与计算条件
  • 7.3.1 单相模拟条件
  • 7.3.2 多相计算条件
  • 7.4 结果与讨论
  • 7.4.1 单相模拟结果
  • 7.4.2 气液两相模拟的结果
  • 7.5 小结
  • 第8章 结论与展望
  • 8.1 结论
  • 8.2 展望
  • 参考文献
  • 致谢
  • 在读期间发表论文情况
  • 相关论文文献

    标签:;  ;  ;  ;  ;  ;  

    多层搅拌式生物反应器内溶液流变性质对流场特性影响的研究
    下载Doc文档

    猜你喜欢