论文摘要
变分原理广泛地应用在力学的各个方面,它是研究力学、物理学和其他各种技术科学的强有力的工具,在理论上和实用上都有重要的价值。加权残数法是一种新兴的计算力学方法,计算量小,精度高,简单直观,可以没有泛函等等。有些文献认为加权残数法和变分原理无关,我们的研究表明加权残数法和变分原理之间有着密切的关系。 本文首先讨论了加权残值法的基本方法:配点法、子域配置法、Galerkin法和最小二乘法。接着研究了变分原理的直接方法——Ritz法和加权残值法的主要方法——Galerkin法的关系,说明两种方法的等价是有条件的。为了进一步研究加权残数法与变分原理的关系,论述了变分原理各类条件的完备性。研究表明组合变分原理导致加权残数法中的罚函数法。 本文应用加权残数法中的广义Galerkin法,建立保守系统的有限元计算模型,经过严密的数学推演,表明这些模型与应用广义变分原理建立的有限元模型相同,说明广义Galerkin法的有效性,同时,也进一步说明加权残数法和变分原理之间有着密切的关系。 本文还从Laplace方程和弹性力学基本方程出发讨论了积分方程和加权残值法的关系。 文章最后得出结论:加权残数法和变分原理有密切关系的,如果联合应用加权残数法和变分原理,在工程实际中将会将会更有利于解决各种实际问题和提高计算效率。
论文目录
相关论文文献
- [1].基于改进对数法的飞机对地攻击效能评估[J]. 舰船电子工程 2020(07)
- [2].不恢复余数法的改进——预比较法除法器的FPGA实现[J]. 工业控制计算机 2015(07)
- [3].三数法:最强表达魔法[J]. 小学生导读 2019(Z2)
- [4].设数法[J]. 小学生学习指导 2016(31)
- [5].“份数法”的妙用[J]. 读写算(小学高年级) 2017(04)
- [6].不一样的数独[J]. 课堂内外(小学智慧数学) 2016(05)
- [7].数数法养生[J]. 老同志之友 2009(10)
- [8].老年养生数数法[J]. 人生与伴侣(月末版) 2008(08)
- [9].导数法求参数时的一些易错点[J]. 考试周刊 2018(74)
- [10].用“设数法”推算[J]. 数学小灵通(5-6年级版) 2013(Z2)
- [11].例析“分数法”配平化学方程式[J]. 数理化学习(初中版) 2016(08)
- [12].老年养生数数法[J]. 现代养生 2009(03)
- [13].数数法养生[J]. 家庭医药 2008(09)
- [14].差数法测定茶汤中稀土元素[J]. 中国茶叶加工 2016(05)
- [15].百以内数的数法和组成的教学谈[J]. 新课程(上) 2019(01)
- [16].用标数法巧解难题[J]. 数学大世界(小学五六年级适用) 2010(Z1)
- [17].“往返读数法”探究[J]. 大学物理 2012(10)
- [18].用份数法解更巧妙[J]. 读写算(小学高年级) 2015(04)
- [19].巧用“设数法”解题[J]. 数学小灵通(1-2年级版) 2013(Z2)
- [20].导数法确定大小趣谈[J]. 高中数理化(高三版) 2008(09)
- [21].配合物稳定常数测定时半整数法使用条件的探讨[J]. 广州化工 2010(10)
- [22].总图布置的基数序数法[J]. 科技创新与应用 2017(32)
- [23].基于对数法的飞机作战效能评估[J]. 民营科技 2015(03)
- [24].全新数独第二课[J]. 青少年文学(推理世界A辑) 2009(05)
- [25].导数法在中学数学解题中的应用[J]. 语数外学习(数学教育) 2012(04)
- [26].数数法结合药物治疗慢性胃炎[J]. 求医问药(下半月) 2012(10)
- [27].基于改进欧式范数法的供应商选择研究[J]. 商业研究 2010(02)
- [28].利用Z分数法回顾性评价实验室检测结果[J]. 包头医学院学报 2015(08)
- [29].复数法仍是解题的有力工具[J]. 数学学习与研究(教研版) 2009(12)
- [30].养生保健数数法[J]. 开心老年 2011(06)