关于一些算子弱有界性的讨论

关于一些算子弱有界性的讨论

论文摘要

本文主要讨论了调和分析中一些算子的弱有界性问题.首先在引言中给出这些算子的背景和相关问题,然后在其后的各章进行分别讨论。 在第一章我们得到参数型Marcinkiewicz积分μΩρ在一定的核条件下,是(H1,∞,L1,∞)型的算子,作为它的应用,μΩρ还是弱(1,1)型的和(p,p)(1<p≤2)的。 第二章讨论了通常的Marcinkiewicz积分μΩ(H1,∞,L1,∞)型和弱(1,1)型估计。这里的核条件是最近给出的。 第三章建立了Littlewood-Paley算子交换子gψ,b在Herz型Hardy空间H(?)qα,p的端点估计。我们得到当α=n(1-1/g)时,gψ,b是(H(?)qα,p(Rn),(?)qα,p,∞(Rn))型的。 第四章讨论了粗糙核分数次积分算子的两权弱型不等式。当权函数(u,v)满足一定条件时,我们得到IΩ,α是弱(p,p)型的。

论文目录

  • Introduction
  • 1 Parametric Marcinkiewicz integral
  • 2 Marcinkiewicz integral with bounded kernel
  • 3 Commutator of Littlewood-Paley operator
  • 4 Rough fractional integral operator
  • Bibliography
  • Acknowledges
  • 相关论文文献

    • [1].不相干算子和强不相干算子的刻画[J]. 吉林大学学报(理学版) 2020(01)
    • [2].应用偏序集解决多准则聚合算子赋权难题[J]. 电大理工 2019(04)
    • [3].两个算子之和的极分解[J]. 内蒙古大学学报(自然科学版) 2020(02)
    • [4].一种新型对数弱化缓冲算子的构造及其应用[J]. 数学的实践与认识 2020(10)
    • [5].关系诱导的形态学算子及其性质[J]. 苏州科技大学学报(自然科学版) 2020(03)
    • [6].有限算子值框架的对偶与相似[J]. 应用数学 2018(04)
    • [7].Bernstein-Stancu算子的加权逼近[J]. 杭州师范大学学报(自然科学版) 2016(06)
    • [8].w-Ornstein-Ulenbeck算子自伴性的初等证明[J]. 兰州文理学院学报(自然科学版) 2016(06)
    • [9].基于旋转变换的灰值形态算子[J]. 中南民族大学学报(自然科学版) 2017(02)
    • [10].混合算子在数据信息聚合中的应用研究[J]. 计算机工程与应用 2017(15)
    • [11].不交的循环算子准则[J]. 吉林师范大学学报(自然科学版) 2017(03)
    • [12].一对幂等算子的值域和核的关系[J]. 数学的实践与认识 2017(16)
    • [13].一类基于波利亚分布的修正的Lupas-Durrmeyer型算子[J]. 纯粹数学与应用数学 2017(05)
    • [14].正几乎弱算子的性质[J]. 绵阳师范学院学报 2016(08)
    • [15].灰色预测中缓冲算子的组合性质及应用[J]. 控制与决策 2016(10)
    • [16].K-算子值框架的性质[J]. 西安文理学院学报(自然科学版) 2015(01)
    • [17].几种特征点提取算子的分析和比较[J]. 现代测绘 2015(03)
    • [18].“神算子”叮咚[J]. 小学阅读指南(低年级版) 2020(06)
    • [19].神算子[J]. 意林(少年版) 2012(09)
    • [20].p-框架、Hilbert-Schauder框架与σ-框架算子[J]. 中国科学:数学 2016(12)
    • [21].关于分数幂算子(-△)~(α/2)的一个非线性估计[J]. 数学的实践与认识 2017(09)
    • [22].基于语言型混合算子的模糊信息聚合方法[J]. 控制与决策 2017(08)
    • [23].一类调节强度可变的弱化缓冲算子及其应用研究[J]. 中国管理科学 2016(08)
    • [24].一类弱化缓冲算子的构造及应用[J]. 廊坊师范学院学报(自然科学版) 2014(06)
    • [25].巴拿赫空间上发展算子的非一致多项式三分性[J]. 山东大学学报(理学版) 2013(12)
    • [26].一种新的强化缓冲算子的构造及其应用[J]. 赤峰学院学报(自然科学版) 2013(17)
    • [27].*-A(n)算子的谱性质[J]. 系统科学与数学 2014(03)
    • [28].基于单调函数的新强化缓冲算子及其性质研究[J]. 中国传媒大学学报(自然科学版) 2013(01)
    • [29].算子的亚循环性与拓扑一致降标[J]. 华东师范大学学报(自然科学版) 2013(05)
    • [30].弱化缓冲算子作用强度及光滑性比较[J]. 系统工程理论与实践 2013(11)

    标签:;  ;  ;  ;  ;  ;  ;  ;  

    关于一些算子弱有界性的讨论
    下载Doc文档

    猜你喜欢