论文摘要
量子化学是设计具有期望的化学和物理特征分子的重要工具,并且从头计算技术可以对分子的结构和性能进行预测。目前对于磁性化合物耦合常数的精确计算仍是对磁性材料进行理论研究的挑战。本工作采用系列量子化学方法预测了含顺磁离子与有机自由基配合物的磁学性质(耦合常数)。本论文所处理的模型为杂自旋体系,由含有氮氧自由基的3NOPy或4NOPy配体与含顺磁离子的[M(hfac)2]组成的配合物。采用最流行的结合Noodleman的对称性破损方法(BS)的密度泛函理论(DFT)和Hartree-Fork理论分别对含有多个顺磁金属中心有机自由基的簇合物进行了理论模拟。我们将得到的磁偶合常数与实验数据进行对比,发现相对于Hartree-Fork方法,结合对称性破损方法的密度泛函理论,能更好地得到杂自旋体系的耦合常数。同时在本论文中,我们也比较了基组效应与计算所采用的公式对偶合常数计算结果的影响。对于杂自旋体系的耦合常数的精确计算与材料设计提供了理论依据。为了研究[Cu(hfac)2(4NOPy)2]和[Cu(hfac)2(3NOPy)2]配合物的磁学性质,我们应用了结合了对称性破损方法的非限制性密度泛函理论和Hartree-Fork理论对带有3NOPy和4NOPy配体的[Cu(hfac)2]配合物进行了研究,得到了不同方法(UPBE, UB3PW91, UB3LYP, UB3P86, UPBE0和UHF)下的有效交换耦合常数J1。计算所得的最好的[Cu(hfac)2(4NOPy)2]的交换耦合常数为J = 55.8 K,和配合物[Cu(hfac)2(3NOPy)2]的最低交换耦合常数为J = -33.1K。发现对这两个配合物,UPBE0, UB3PW91, UB3LYP和UB3P86都是适合它们交换耦合常数计算的方法。本文同时研究了不同的混合基组和密度泛函理论对杂自旋体系的影响。我们对带有3NOPy和4NOPy配体的[Cu(hfac)2]复合物进行了不同的基组和密度泛函理论的交换耦合常数(J)的计算。对不同基组下的DFT的交换耦合常数(J)结果进行了对比。在与实验结果和以前的理论计算结果比较后,我们得到PBE方法与SDD/6-311G(d)基组和PBE0方法与LanL2DZ/6-311G(d)基组分别对[Cu(hfac)2(4NOPy)2]和[Cu(hfac)2(3NOPy)2]最适合。而且机组效应对交换耦合常数(J)结果的影响最小。我们利用结合了对称性破损方法的非限制性密度泛函理论(DFT)研究了顺磁金属离子Mn-自由基多自旋体系的磁学性质。采用用不同的基组(DGDZVP和LANL2DZ)和方法( UPBE, UB3PW91, UB3LYP, UB1LYP, UB3P86,和UPBE0 )下的[Mn(hfac)2(4NOPy)2]的磁耦合常数(J),得到与实验值(J = -12.4±0.1K)吻合最好的J值为-12.5 K。
论文目录
中文摘要AbstractChapter One Introduction1.1 Historical Background1.2 A Brief Introduction to Magnetism1.3 Classification of Magnetic Material1.3.1 Diamagnetism1.3.2 Paramagnetism1.3.3 Collective magnetism1.4 Molecule Based Magnets1.4.1 Nitroxide-based Organic MagnetsReferencesChapter Two Theoretical Background and Fundamentals Basics2.1 Computational chemistry2.1.1 Applications of Computational Chemistry.2.1.2 Quantum Chemical Programs2.2 Principles of Molecular Mechanics2.3 Principles of Quantum Mechanics2.3.1 The Postulates of Quantum Mechanics2.3.2 The Schr?dinger Wave Equation2.3.3 The Born-Oppenheimer Approximation2.3.4 Pauli Exclusion Principle2.3.5 Slater determinants2.3.6 Basis set2.4 Electronic structure methods2.4.1 Semi-empirical methods2.4.2 Ab initio methods2.4.3 Broken symmetry ApproachReferencesChapter Three Broken symmetry approach and density functional theory calculations for hetero-spin system consisting of copper(II) and aminoxyl radicals3.1 Introduction3.2 Computational details3.2.1 Description of the Models3.2.2 Evaluation of exchange coupling constants3.2.3 Computational methods3.3 Results and Discussions3.3.1 Effective exchange coupling constants J3.3.2 Spin Density Distribution3.4 ConclusionReferencesChapter Four Broken symmetry approach and density functional theory investigation on heterospin system consisting of copper(II) and aminoxyl radicals: comparison and reliability of different basis sets approaches4.1 Introduction4.2 Theoretical background of J4.3 Computational details4.3.1 Description of the Models4.3.2 DFT calculation4.4 Results and discussion4.4.1 Influence of the basis sets4.4.2 The influence of the basis sets analyzed based on spin density population4.5 ConclusionsReferencesChapter Five Broken symmetry approach and density functional theory investigation on heterospin system consisting of manganese(II) and aminoxyl radicals5.1 Introduction5.2 Computational details5.2.1 Description of the Models5.2.2 Evaluation of exchange coupling constants J.5.2.3 Density Functional Theory (DFT) calculation5.3 Results and discussions5.3.1 The calculations of energy gaps between HS and BS state5.3.2 Effective exchange coupling constants J5.3.3 The total angular momentum of HS and BS state5.3.4 Spin density distribution5.4 ConclusionReferencesAcknowledgementsDedication在学期间公开发表论文情况
相关论文文献
标签:对称性破损方法论文; 密度泛函理论论文; 交换耦合常数论文; 杂自旋体系论文; 磁学性质论文; 混合基组论文;
利用对称性破损方法和密度泛函理论对含顺磁离子与有机自由基配合物磁学性质的量子化学理论研究
下载Doc文档