β-胡萝卜素的高压稳态和超快光谱研究

β-胡萝卜素的高压稳态和超快光谱研究

论文摘要

类胡萝卜素是自然界中最丰富的天然色素之一,广泛存在于包括人类在内的生物有机体内,在光合作用、预防人类疾病等方面起重要作用。人们采用稳态光谱、时间分辨超快光谱以及理论方法对类胡萝卜素的激发态能级结构及其动力学特性进行了广泛的研究,为探索类胡萝卜素的光物理和光化学功能的机制提供了重要信息。然而,这方面尚有一些不清楚的问题,如某些中间电子态或振动态是否存在、其弛豫过程如何,以及外界环境对各电子态和振动态能级及其弛豫过程有何影响等。这些问题导致人们还不能准确地了解类胡萝卜素在自然界中发挥其重要生物功能的物理机制。本文认为将高压极端条件与常规的光谱学手段相结合是解决上述问题的有效方法。由于高压条件可以放大分子间相互作用,所以研究高压条件下的稳态吸收和拉曼光谱,能够深入探讨环境因素对类胡萝卜素的电子态和振动态能级的影响;由于某些不同起源的光谱成分在高压下呈现不同的变化规律,所以进行高压条件下的时间分辨超快光谱研究会使某些常压条件下不易区分的过程变得易于区分和指认,从而有望澄清类胡萝卜素激发态动力学研究中的一些不易解决的问题。基于上述思想,本文选择常压条件下类胡萝卜素家族中研究成果最为丰富的β-胡萝卜素(β-carotene)为研究对象,研究了其高压稳态及飞秒时间分辨瞬态吸收光谱,同时进行了相应的理论分析。本文的研究成果揭示了影响类胡萝卜素稳态及超快光谱特征的内在和外在因素,提出了新的激发态能量弛豫路径,为深入探讨类胡萝卜素在自然界中发挥其生物功能的物理机制提供了重要依据。为了给高压实验结果的分析提供必要的基础,本文首先研究了常压条件下β-carotene吸收光谱的溶剂效应。实验测得了β-carotene在32种溶剂中的吸收光谱,用多模时域公式对光谱进行了分析。结果表明,β-carotene吸收光谱的0-0带能量和带宽受溶剂极化率影响较大,受溶剂极性影响较小,溶剂极性对带宽的影响比对0-0带能量的影响大得多。除了溶剂极性和极化率等参数之外,溶剂分子的大小和运动状态等微观因素也是影响吸收光谱的原因。随后进行了高压条件下β-carotene在正己烷和二硫化碳溶液中的稳态吸收和拉曼光谱研究。在二硫化碳溶液中,β-carotene吸收光谱随压力的红移和展宽程度都比正己烷溶液中的大,这是由于二硫化碳中溶质溶剂之间的色散相互作用对压力更敏感。为了解释不同溶剂中β-carotene分子S0→S2的跃迁偶极矩随压力变化趋势相反的实验结果,提出有效溶剂分子模型,这一模型进一步证明溶剂分子的大小、位置和取向等微观因素都影响类胡萝卜素在自然界中的捕光能力。通过比较两种溶剂中几个有代表性的拉曼振动模式的峰位随压力的变化关系,提出了键长缩短和电子振动耦合的竞争机制,证实C=C伸缩振动在S1→S0能量内转换过程中发挥了重要作用。拉曼光谱的实验结果还表明,高压条件下β-carotene分子结构发生了微小的扭转,这为分析瞬态吸收光谱的实验结果提供了必要的信息。采用Gaussian 03软件提供的密度函数理论方法研究了两端β-环扭转对β-carotene基态势能面和振动光谱的影响。计算发现,β-carotene分子中的C6-C7键很容易被扭转,这种扭转可以产生两个具有Ci对称性的稳定异构体—顺式(cis)结构和反式(trans)结构,trans→cis异构化只需要克服较低的势垒。虽然高压条件下两端β-环的微小扭转不会导致基态分子发生异构,但会使分子势能面趋于平坦。基于以上实验和理论分析结果,进行了高压条件下β-carotene在正己烷溶液中的瞬态吸收光谱研究。研制出了适合瞬态光谱实验的压机,搭建了高压条件下飞秒时间分辨泵浦-探测实验平台,在此平台上完成了β-carotene的瞬态吸收光谱实验,采用单值分解和全局拟合方法对实验数据进行了分析。比较各个光谱成分的能级位置及其动力学过程随压力的变化关系,发现β-carotene瞬态吸收光谱中的第二个成分对应的是S1态的cis→trans异构过程。提出S1→S0无辐射弛豫速率同时受到能隙和溶剂粘度的影响,这为人们认识天然色素-蛋白质复合物中类胡萝卜素的高效能量传递功能提供了重要参考。本论文将高压条件和飞秒时间分辨光谱技术相结合,首次实现了高压条件下整个白光谱段的瞬态光谱测量。这是研究超快动力学过程的新方法,为人们探讨深层次的物理和化学问题提供了全新的技术手段。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 高压技术及应用
  • 1.1.1 高压条件在人类认识自然过程中的重要地位
  • 1.1.2 高压技术
  • 1.1.3 静高压产生装置-金刚石对顶砧压机
  • 1.2 飞秒技术及应用
  • 1.2.1 飞秒激光技术及应用
  • 1.2.2 飞秒时间分辨光谱技术及应用
  • 1.3 类胡萝卜素领域的研究现状
  • 1.3.1 类胡萝卜素及其在自然界中的作用
  • 1.3.2 国内外对类胡萝卜素的研究现状
  • 1.4 本论文的研究目的及意义
  • 1.4.1 进行高压条件下类胡萝卜素光谱学研究的意义
  • 1.4.2 研究β-胡萝卜素的意义
  • 1.5 本论文的主要研究内容
  • 第2章 常压条件下β-carotene 的吸收光谱研究
  • 2.1 类胡萝卜素吸收光谱的溶剂效应及其研究现状
  • 2.1.1 分子吸收光谱的溶剂显色效应
  • 2.1.2 类胡萝卜素吸收光谱的溶剂效应
  • 2.2 β-carotene 的吸收光谱实验及数据分析
  • 2.2.1 吸收光谱实验过程的简单描述
  • 2.2.2 吸收光谱的分析方法
  • 2.2.3 吸收光谱的实验及拟合结果
  • 2.3 β-carotene 吸收光谱实验结果的分析
  • 2.3.1 溶剂对β-carotene 吸收光谱0-0 带峰位的影响
  • 2.3.2 溶剂对β-carotene 吸收光谱0-0 带带宽的影响
  • 0→S2 跃迁偶极矩的影响'>2.3.3 溶剂对 β-carotene S0→S2跃迁偶极矩的影响
  • 2.4 本章小结
  • 第3章 β-carotene 的高压吸收光谱研究
  • 3.1 高压吸收光谱的研究背景
  • 3.1.1 高压条件对分子吸收光谱的影响
  • 3.1.2 高压条件下类胡萝卜素吸收光谱的研究
  • 3.2 β-carotene 的高压吸收光谱实验
  • 3.2.1 高压吸收光谱实验过程的简单描述
  • 3.2.2 高压吸收光谱的实验及拟合结果
  • 3.3 高压条件对β-carotene 吸收光谱0-0 带峰位的影响
  • 3.3.1 0-0 带峰位随压力的变化关系
  • 3.3.2 0-0 带峰位与溶剂极化率的关系
  • 3.4 高压条件对β-carotene 吸收光谱0-0 带带宽的影响
  • 0→S2 跃迁偶极矩的影响'>3.5 高压条件对 β-carotene S0→S2跃迁偶极矩的影响
  • 3.5.1 吸收光谱强度因子随压力的变化关系
  • 3.5.2 有效溶剂分子模型
  • 3.6 高压吸收光谱实验结果对类胡萝卜素捕光功能的启示
  • 3.7 本章小节
  • 第4章 β-carotene 的高压拉曼光谱研究
  • 4.1 类胡萝卜素拉曼光谱的研究现状
  • 4.2 β-carotene 的高压拉曼光谱实验
  • 4.2.1 高压拉曼光谱实验过程的简单描述
  • 4.2.2 常压和高压拉曼光谱实验结果
  • 4.3 高压条件对β-carotene 拉曼光谱峰位的影响
  • 4.3.1 几个典型拉曼带的峰位随压力的变化关系
  • 4.3.2 电子振动耦合理论
  • 4.3.3 竞争机制模型
  • 4.4 高压条件对β-carotene 拉曼光谱带宽和强度的影响
  • 4.4.1 高压条件对ν1 带宽度的影响
  • 4.4.2 高压条件对ν4 和ν2 带相对强度的影响
  • 4.5 本章小结
  • 第5章 β-carotene 分子结构和振动光谱的密度函数理论研究
  • 5.1 密度函数理论及其在类胡萝卜素研究方面的应用
  • 5.1.1 密度函数理论简介
  • 5.1.2 终端结构对类胡萝卜素的重要影响
  • 5.2 计算方法及过程
  • 5.3 β-环扭转对分子结构的影响
  • 5.3.1 优化的结构
  • 5.3.2 势能曲线
  • 5.3.3 键长和π–电子离域
  • 5.4 β-环扭转对分子振动光谱的影响
  • 5.4.1 β-环扭转对拉曼光谱的影响
  • 5.4.2 β-环扭转对红外光谱的影响
  • 5.5 理论计算结果的实际意义
  • 5.6 本章小结
  • 第6章 β-carotene 的高压飞秒时间分辨瞬态吸收光谱研究
  • 6.1 β-carotene 激发态动力学的研究现状
  • 6.2 高压瞬态吸收光谱实验及数据分析方法
  • 6.2.1 飞秒时间分辨瞬态吸收光谱实验
  • 6.2.2 瞬态吸收光谱数据的分析方法
  • 6.3 瞬态吸收光谱实验结果
  • 6.3.1 常压条件下的实验结果
  • 6.3.2 高压条件下的实验结果
  • 6.4 瞬态吸收光谱实验结果的分析与讨论
  • n态和S1 态的能级位置随压力的变化关系'>6.4.1 Sn态和S1态的能级位置随压力的变化关系
  • 2 态的能量弛豫过程'>6.4.2 S2态的能量弛豫过程
  • x 态及其弛豫过程'>6.4.3 Sx态及其弛豫过程
  • 1 态的能量弛豫过程'>6.4.4 S1态的能量弛豫过程
  • 0 态的振动弛豫过程'>6.4.5 S0态的振动弛豫过程
  • 6.5 本章小结
  • 结论
  • 参考文献
  • 攻读博士学位期间发表的学术论文
  • 致谢
  • 个人简历
  • 相关论文文献

    • [1].Mutation Breeding of β-carotene Producing Strain B. trispora by Low Energy Ion Implantation[J]. Plasma Science and Technology 2009(01)
    • [2].ZmcrtRB3 Encodes a Carotenoid Hydroxylase that Affects the Accumulation of α-carotene in Maize Kernel[J]. Journal of Integrative Plant Biology 2012(04)
    • [3].Difference in effect of temperature on absorption and Raman spectra between all-trans-β-carotene and all-trans-retinol[J]. Chinese Physics B 2012(12)
    • [4].Influence of the ordered structure of short-chain polymer molecule all-trans-β-carotene on Raman scattering cross section in liquid[J]. Chinese Physics B 2011(03)
    • [5].Study of second-order nonlinear hyperpolarisability of all-trans-β-carotene in solutions by linear spectroscopic technique[J]. Chinese Physics B 2010(06)
    • [6].Influence of amplified spontaneous emission and fluorescence of β-carotene on stimulated Raman scattering of carbon disulfide[J]. Science in China(Series G:Physics,Mechanics & Astronomy) 2009(04)
    • [7].Effect of CC Coherent Vibration on Relative Raman Scattering Cross Sections of All-trans β-Carotene[J]. Chemical Research in Chinese Universities 2010(04)
    • [8].Intestinal uptake of barley protein-based nanoparticles for β-carotene delivery[J]. Acta Pharmaceutica Sinica B 2019(01)
    • [9].Combining Ability and Parent-Offspring Correlation of Maize(Zea may L.) Grain β-Carotene Content with a Complete Diallel[J]. Journal of Integrative Agriculture 2013(01)
    • [10].Heterologous expression of Hp BHY and Cr BKT increases heat tolerance in Physcomitrella patens[J]. Plant Diversity 2019(04)
    • [11].The P450-type carotene hydroxylase PuCHY1 from Porphyra suggests the evolution of carotenoid metabolism in red algae[J]. Journal of Integrative Plant Biology 2014(09)
    • [12].生物分子β-carotene的放大自发辐射与荧光对CS_2受激拉曼散射的影响[J]. 中国科学(G辑:物理学 力学 天文学) 2009(04)
    • [13].Molecular Cloning and Expression Analysis of the ζ-Carotene Desaturase Gene in Chinese kale(Brassica oleracea var.alboglabra Bailey)[J]. Horticultural Plant Journal 2018(03)
    • [14].A Prenyltransferase Gene Confirmed to Be a Carotenogenic CRTE Gene from Sweetpotato[J]. Journal of Genetics and Genomics 2014(11)
    • [15].Effect of solution concentration on the structured order and optical properties of short-chain polyene biomolecules[J]. Science China(Physics,Mechanics & Astronomy) 2010(09)
    • [16].Selection of Parents for Breeding Edible Varieties of Sweetpotato with High Carotene Content[J]. Agricultural Sciences in China 2009(10)
    • [17].Characterization of Carotenoid Accumulation and Carotenogenic Gene Expression During Fruit Development in Yellow and White Loquat Fruit[J]. Horticultural Plant Journal 2016(01)
    • [18].Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre[J]. Chinese Physics B 2010(08)
    • [19].Cloning and Functional Characterisation of Carotenoid Cleavage Dioxygenase 4 from Wolfberry[J]. Transactions of Tianjin University 2017(01)
    • [20].Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli[J]. Chinese Journal of Natural Medicines 2020(09)
    • [21].阅读理解二则(英文)[J]. 中学英语园地(九年级版) 2009(Z2)
    • [22].Association of Dietary Carotenoids Intake with Skeletal Fluorosis in the Coal-burning Fluorosis Area of Guizhou Province[J]. Biomedical and Environmental Sciences 2018(06)
    • [23].Biochemical changes in phenols,flavonoids,tannins,vitamin E,β-carotene and antioxidant activity during soaking of three white sorghum varieties[J]. Asian Pacific Journal of Tropical Biomedicine 2012(03)
    • [24].Changes of the Main Carotenoid Pigment Contents During the Drying Processes of the Different Harvest Stage Fruits of Lycium barbarum L[J]. Agricultural Sciences in China 2008(03)
    • [25].Evaluation of antigenotoxic effects of carotenoids from green algae Chlorococcum humicola using human lymphocytes[J]. Asian Pacific Journal of Tropical Biomedicine 2012(02)
    • [26].Solvent effects on the S_0→S_2 absorption spectra of β-carotene[J]. Chinese Physics B 2010(01)
    • [27].Antioxidant compounds and capacities of Gac (Momordica cochinchinensis Spreng) fruits[J]. Asian Pacific Journal of Tropical Biomedicine 2019(04)
    • [28].活性白土对模拟油脂中β-胡萝卜素和叶绿素的吸附动力学研究(英文)[J]. Chinese Journal of Chemical Engineering 2008(02)
    • [29].Carotenoid Metabolism:Biosynthesis,Regulation,and Beyond[J]. Journal of Integrative Plant Biology 2008(07)

    标签:;  ;  ;  ;  ;  ;  

    β-胡萝卜素的高压稳态和超快光谱研究
    下载Doc文档

    猜你喜欢