基于固体脂质体纳米粒的新型磁共振大肠成像方法的建立

基于固体脂质体纳米粒的新型磁共振大肠成像方法的建立

论文摘要

研究目的本课题以固体脂质纳米粒(SLN)为载体,负载钆喷替酸葡甲胺(Gd-DTPA)而制备纳米化MR对比剂。通过纳米化MR对比剂直肠给药后,大肠壁吸收纳米化对比剂后于T1WI的MR上增强显示及有助于大肠癌的显示,以建立基于固体脂质体纳米粒的新型MR大肠成像方法。材料与方法1.主要以硬脂酸及Gd-DTPA为原料,采用乳化-溶剂挥发法合成Gd-DTPA-SLN、FITC-Gd-DTPA-SLN及SLN三种纳米粒,并对纳米粒进行检测、体外释放及体外MR成像。2.基于纳米化对比剂的正常小鼠大肠MR成像方法的建立及组织细胞学定位30只正常小鼠随机分5组(Gd-DTPA-SLN、FITC-Gd-DTPA-SLN、SLN、Gd-DTPA及水),每组各6只。分别进行小鼠乙状结肠及直肠灌药前、保留灌肠中及灌药后20分钟MR扫描。测量每只动物灌药前后大肠壁的T1值及大肠壁与周围正常肌肉C及CNR。此外,选择2只正常小鼠进行静脉注射Gd-DTPA作为对照。最后处死动物,取正常大肠壁进行组织细胞学分析。3.基于纳米化对比剂的大肠癌MR成像方法的初步应用2只大肠癌小鼠乙状结肠及直肠灌药(Gd-DTPA-SLN)前、保留灌肠中及灌药后20分钟MR扫描。然后处死动物,取正常大肠壁进行组织学分析。结果1.采用乳化-溶剂挥发法合成Gd-DTPA-SLN、FITC-Gd-DTPA-SLN及SLN三种纳米粒平均粒径40.8nm-300.8nm,Gd-DTPA-SLN及FITC-Gd-DTPA-SLN中Gd-DTPA包封率分别为55.8%和55%。Gd-DTPA-SLN纳米粒在pH7.4的PBS中1h释放约32%,8h才达到平衡。体外MR成像显示Gd-DTPA-SLN、FITC-Gd-DTPA-SLN中的Gd-DTPA与Gd-DTPA溶液中T1驰豫时间相当。2.基于纳米化对比剂的正常小鼠大肠MR成像方法的建立及组织细胞学定位Gd-DTPA-SLN及FITC-Gd-DTPA-SLN纳米粒保留灌肠T1WI的MR可以获得与Gd-DTPA保留灌肠MR成像类似的明腔MR结肠成像。由Gd-DTPA-SLN纳米粒及FITC-Gd-DTPA-SLN纳米粒保留灌肠20分钟后T1WI的FLAIR的MR图像与保留灌肠前相比,所有小鼠大肠壁全层明显均匀强化,然而SLN纳米粒、Gd-DTPA及蒸馏水对照组小鼠大肠壁信号强度则无明显变化。与MR图像一致,Gd-DTPA-SLN纳米粒及FITC-Gd-DTPA-SLN纳米粒组大肠壁T1驰豫时间保留灌肠20分钟后较灌肠前明显降低,而大肠壁与周围正常肌肉C及CNR保留灌肠20分钟后较灌肠前明显升高。FITC-Gd-DTPA-SLN保留灌肠20分钟后大肠壁荧光显微镜及激光共聚焦荧光显微镜显示大肠壁各层细胞核外部分包括细胞浆及细胞外间隙内均匀分布的由FITC发射的高浓度绿荧光。Gd-DTPA-SLN、SLN、Gd-DTPA及蒸馏水组保留灌肠20分钟后大肠壁内未见荧光物质。对照组则未见上述MR及组织细胞学表现。3.基于纳米化对比剂的大肠癌MR成像方法的初步应用Gd-DTPA-SLN保留灌肠中T1WI的MR成像可以获得肿瘤明腔MR结肠成像。Gd-DTPA-SLN保留灌肠20分钟后T1WI的MR成像检查显示正常肠壁明显均匀强化,而大肠癌病灶的主体部分强化程度较轻,病灶与正常肠壁对比鲜明。结论1.采用乳化-溶剂挥发法合成负载Gd-DTPA的固体脂质体纳米粒具备肠道易吸收、Gd-DTPA负载量大及包封率高、粒径适宜及不改变Gd-DTPA的高顺磁性等特点。2.本研究发挥MR及纳米技术的优势而建立了基于纳米的新型大肠成像方法,其主要特点:经直肠给药,而不需要静脉用药;一次灌药后可以获得明腔大肠MR成像及大肠壁吸收增强成像;FITC-Gd-DTPA-SLN纳米粒即可用于MR成像,又可用于组织细胞学的定位;纳米颗粒进入细胞内而实现细胞水平的显像;可能实现大肠吸收功能的评价。3.基于固体脂质体纳米粒的新型MR大肠成像方法在大肠癌中的初步应用表明该方法具有可行性并有助于肿瘤病变的显示。4.基于纳米化对比剂MR大肠成像方法的建立还可能成为结肠定位释药系统的新型体内评价方法。5.临床上所用的3T MR扫描仪配置一小鼠专用线圈完全可以应用小鼠腹盆腔成像,并可获得高质量的MR图像。

论文目录

  • 致谢
  • 中文摘要
  • 英文摘要
  • 缩略语
  • 正文
  • 1. 材料与方法
  • 2. 结果
  • 3. 讨论
  • 4. 结论
  • 参考文献
  • 文献综述
  • 参考文献
  • 作者简历
  • 在学期间所取得的科研成果
  • 相关论文文献

    • [1].甘草次酸纳米粒的制备、表征及其抗肿瘤活性研究[J]. 中国药房 2020(13)
    • [2].高分子纳米粒[J]. 高分子通报 2020(09)
    • [3].赖氨酸超小纳米粒的制备及胶质瘤细胞荧光成像[J]. 功能材料 2017(01)
    • [4].二氧化硅纳米粒消化酶蛋白冠的形成及影响因素[J]. 现代化工 2017(04)
    • [5].银模板法制备中空金纳米粒及其质量评价[J]. 药学研究 2017(04)
    • [6].细胞内蛋白质在金纳米粒表面的吸附影响金纳米粒的细胞摄取和胞内分布(英文)[J]. Journal of Chinese Pharmaceutical Sciences 2016(09)
    • [7].共载阿霉素-碳点@磷酸钙脂质纳米粒的制备与评价[J]. 沈阳药科大学学报 2019(11)
    • [8].碗状纳米粒的制备、表征及载药功能的评价[J]. 上海交通大学学报(医学版) 2018(05)
    • [9].载吉西他滨介孔二氧化硅纳米粒的制备及其抗肿瘤活性评价[J]. 中国现代应用药学 2017(05)
    • [10].碳纳米粒的制备及其用于氯霉素的测定[J]. 中国药科大学学报 2015(03)
    • [11].肝素纳米粒的研究进展[J]. 中国药学杂志 2013(18)
    • [12].共载阿霉素与姜黄素纳米粒的制备及其抗耐药活性研究[J]. 内蒙古医学杂志 2019(11)
    • [13].磁性四氧化三铁纳米粒在磁共振/光热双模式成像中的应用[J]. 药学学报 2017(03)
    • [14].细胞膜仿生纳米粒的研究与应用[J]. 中国医药生物技术 2017(04)
    • [15].金纳米粒在药物传递系统中的应用[J]. 药学进展 2014(04)
    • [16].三七皂苷长循环纳米粒的性质研究[J]. 中成药 2011(10)
    • [17].载纳米粒的原位凝胶制剂中纳米粒的释放和胶凝温度的考察[J]. 中国药剂学杂志(网络版) 2008(06)
    • [18].不同结合种类仿生型纳米粒的研究进展[J]. 中国临床药理学杂志 2018(01)
    • [19].基于新型树枝状大分子姜黄素纳米粒的制备及体外释放[J]. 医药导报 2017(05)
    • [20].载盐霉素的低密度脂蛋白纳米粒的制备与体外评价[J]. 中国新药杂志 2016(04)
    • [21].酸敏阿霉素脂质纳米粒的制备及其体外抗肿瘤活性研究[J]. 现代生物医学进展 2016(07)
    • [22].载药金纳米粒的研究进展[J]. 药学实践杂志 2016(03)
    • [23].无机纳米粒克服肿瘤多药耐药的研究进展[J]. 中国药学杂志 2016(16)
    • [24].可作为疫苗佐剂的云芝多糖磷酸钙纳米粒的制备与表征[J]. 天然产物研究与开发 2016(09)
    • [25].两种相变型多功能纳米粒的制备及体外特性比较[J]. 中国介入影像与治疗学 2016(10)
    • [26].脂质体磷酸钙纳米粒在药物传递领域的研究进展[J]. 生物物理学报 2013(11)
    • [27].单抗免疫纳米粒的研究进展[J]. 中国生化药物杂志 2012(02)
    • [28].我国纳米粒药物制剂的研究现状[J]. 天津药学 2009(02)
    • [29].功能化硅壳荧光纳米粒的细胞吞噬研究[J]. 高分子学报 2009(07)
    • [30].葛根素肠溶纳米粒的制备及体外释放度研究[J]. 解放军药学学报 2009(06)

    标签:;  ;  ;  ;  ;  ;  

    基于固体脂质体纳米粒的新型磁共振大肠成像方法的建立
    下载Doc文档

    猜你喜欢