华如雨:基于参数优化的内高压成形T型管壁厚均匀化研究论文

华如雨:基于参数优化的内高压成形T型管壁厚均匀化研究论文

本文主要研究内容

作者华如雨(2019)在《基于参数优化的内高压成形T型管壁厚均匀化研究》一文中研究指出:为满足汽车、飞机结构件的质量轻、成本低和具有高安全性的要求,需要新的制造工艺。相比传统铸锻焊等成形工艺技术,内高压成形工艺具有结构轻量化的核心技术,并且模具成本低、成形件结构强度和刚度高、避免二次再加工和报废率低等优点。本文首先利用有限元数值模拟软件Dynaform,对模具的过渡圆角半径大小、摩擦系数、内压力和轴向进给量的匹配加载方式和平衡冲头的进给等,影响T型三通管内高压成形的主要工艺参数进行成形结果分析,发现T型三通管内高压成形件,支管管壁顶部最薄,直管两端壁厚最大,直管壁厚增厚率由管材两端向中心不断减小,壁厚分布不均匀。在满足三通管成形壁厚均匀化的前提下,应选择过渡圆角半径较大的模具进行试验。尽量降低摩擦系数,加强管件材料流动。对于内压加载与轴向进给加载轨迹,本文给出4种加载轨迹,综合极限壁厚和支管高度,最终确定使用在初始内压为一定值时,再开始轴向进给的多线性加载路径。平衡冲头上升速度应略快于支管成形速度,保证冲头与支管顶部相对接触。然后,根据综合选择出的加载路径方案,将加载路径上的各点与摩擦系数作为可能影响壁厚增厚率和减薄率的影响因子,利用正交实验设计和极差分析,将各成形工艺参数对成形最小壁厚影响进行排序,得到影响成形壁厚大小的关键成形因素。再根据Box-Behnken Design实验设计,将最小壁厚减薄率和主管底部中心壁厚增厚率作为设计目标,得到设计目标与各项关键影响因素间的响应面公式,并建立响应面模型。利用方差和回归分析,得到最优参数组。模具圆角半径为8mm,摩擦系数为0.1,内压力第一次变化开始时间为0.01s,第二次内压变化开始时间为0.02s,内压力第三次变化开始时间为0.06s;初始内压力为1.01MPa,第一次升高内压力为10.37MPa,第二次升高内压力为17.69MPa,最终内压力为20.27MPa;左右推头轴向进给量为44.01mm。预测结果与数值模拟结果进行分析对比,发现优化后的加载路径能够很好的提高T型三通管内高压成形件的壁厚均匀性。最后,对优化前后参数进行T型三通管内高压成形试验对比研究,发现优化参数的成形件壁厚数据实验结果与预测结果基本吻合,最大壁厚增厚率为41.33%,最小壁厚减薄率为28%,极限壁厚差为0.94mm。说明优化后参数能够更好的降低壁厚增厚率和减薄率,提高三通管的整体壁厚均匀性。

Abstract

wei man zu qi che 、fei ji jie gou jian de zhi liang qing 、cheng ben di he ju you gao an quan xing de yao qiu ,xu yao xin de zhi zao gong yi 。xiang bi chuan tong zhu duan han deng cheng xing gong yi ji shu ,nei gao ya cheng xing gong yi ju you jie gou qing liang hua de he xin ji shu ,bing ju mo ju cheng ben di 、cheng xing jian jie gou jiang du he gang du gao 、bi mian er ci zai jia gong he bao fei lv di deng you dian 。ben wen shou xian li yong you xian yuan shu zhi mo ni ruan jian Dynaform,dui mo ju de guo du yuan jiao ban jing da xiao 、ma ca ji shu 、nei ya li he zhou xiang jin gei liang de pi pei jia zai fang shi he ping heng chong tou de jin gei deng ,ying xiang Txing san tong guan nei gao ya cheng xing de zhu yao gong yi can shu jin hang cheng xing jie guo fen xi ,fa xian Txing san tong guan nei gao ya cheng xing jian ,zhi guan guan bi ding bu zui bao ,zhi guan liang duan bi hou zui da ,zhi guan bi hou zeng hou lv you guan cai liang duan xiang zhong xin bu duan jian xiao ,bi hou fen bu bu jun yun 。zai man zu san tong guan cheng xing bi hou jun yun hua de qian di xia ,ying shua ze guo du yuan jiao ban jing jiao da de mo ju jin hang shi yan 。jin liang jiang di ma ca ji shu ,jia jiang guan jian cai liao liu dong 。dui yu nei ya jia zai yu zhou xiang jin gei jia zai gui ji ,ben wen gei chu 4chong jia zai gui ji ,zeng ge ji xian bi hou he zhi guan gao du ,zui zhong que ding shi yong zai chu shi nei ya wei yi ding zhi shi ,zai kai shi zhou xiang jin gei de duo xian xing jia zai lu jing 。ping heng chong tou shang sheng su du ying lve kuai yu zhi guan cheng xing su du ,bao zheng chong tou yu zhi guan ding bu xiang dui jie chu 。ran hou ,gen ju zeng ge shua ze chu de jia zai lu jing fang an ,jiang jia zai lu jing shang de ge dian yu ma ca ji shu zuo wei ke neng ying xiang bi hou zeng hou lv he jian bao lv de ying xiang yin zi ,li yong zheng jiao shi yan she ji he ji cha fen xi ,jiang ge cheng xing gong yi can shu dui cheng xing zui xiao bi hou ying xiang jin hang pai xu ,de dao ying xiang cheng xing bi hou da xiao de guan jian cheng xing yin su 。zai gen ju Box-Behnken Designshi yan she ji ,jiang zui xiao bi hou jian bao lv he zhu guan de bu zhong xin bi hou zeng hou lv zuo wei she ji mu biao ,de dao she ji mu biao yu ge xiang guan jian ying xiang yin su jian de xiang ying mian gong shi ,bing jian li xiang ying mian mo xing 。li yong fang cha he hui gui fen xi ,de dao zui you can shu zu 。mo ju yuan jiao ban jing wei 8mm,ma ca ji shu wei 0.1,nei ya li di yi ci bian hua kai shi shi jian wei 0.01s,di er ci nei ya bian hua kai shi shi jian wei 0.02s,nei ya li di san ci bian hua kai shi shi jian wei 0.06s;chu shi nei ya li wei 1.01MPa,di yi ci sheng gao nei ya li wei 10.37MPa,di er ci sheng gao nei ya li wei 17.69MPa,zui zhong nei ya li wei 20.27MPa;zuo you tui tou zhou xiang jin gei liang wei 44.01mm。yu ce jie guo yu shu zhi mo ni jie guo jin hang fen xi dui bi ,fa xian you hua hou de jia zai lu jing neng gou hen hao de di gao Txing san tong guan nei gao ya cheng xing jian de bi hou jun yun xing 。zui hou ,dui you hua qian hou can shu jin hang Txing san tong guan nei gao ya cheng xing shi yan dui bi yan jiu ,fa xian you hua can shu de cheng xing jian bi hou shu ju shi yan jie guo yu yu ce jie guo ji ben wen ge ,zui da bi hou zeng hou lv wei 41.33%,zui xiao bi hou jian bao lv wei 28%,ji xian bi hou cha wei 0.94mm。shui ming you hua hou can shu neng gou geng hao de jiang di bi hou zeng hou lv he jian bao lv ,di gao san tong guan de zheng ti bi hou jun yun xing 。

论文参考文献

  • [1].Y型管内高压成形影响因素研究及壁厚分布优化[D]. 肖尧.南昌航空大学2019
  • [2].LF2M铝合金T型三通管内高压成形影响因素研究[D]. 包文兵.南昌航空大学2017
  • [3].管材内高压成形数值模拟与工艺研究[D]. 陈杰.上海交通大学2013
  • [4].铝合金热态内高压成形工艺研究[D]. 唐勇.合肥工业大学2010
  • [5].非对称Y型三通管内高压成形过程数值模拟及参数优化[D]. 杜华.合肥工业大学2009
  • [6].内高压成形试验台的改造研究[D]. 李华飞.东北大学2012
  • [7].基于不确定性的管件内高压成形加载路径优化[D]. 胡雨伸.南京理工大学2014
  • [8].波动加载管材超高压液压成形系统的研究与设计[D]. 林小波.东北大学2011
  • [9].某铝合金副车架内高压成形工艺数值仿真研究[D]. 王业清.吉林大学2015
  • [10].联轴器传动套液压成形技术研究[D]. 付坤伦.中国石油大学(华东)2014
  • 读者推荐
  • [1].基于响应面法的双层波纹管液压胀形工艺参数优化[D]. 崔磊.西安石油大学2019
  • [2].Y型管内高压成形影响因素研究及壁厚分布优化[D]. 肖尧.南昌航空大学2019
  • [3].汽车V302副车架塑性成形数值模拟及试验研究[D]. 郭群.南京航空航天大学2018
  • [4].某汽车副车架内高压成形工艺研究及参数优化[D]. 郑斯佳.重庆大学2018
  • [5].铝合金5A02异径三通管内高压成形影响因素研究[D]. 戴龙飞.南昌航空大学2018
  • [6].LF2M铝合金T型三通管内高压成形影响因素研究[D]. 包文兵.南昌航空大学2017
  • [7].T型三通管轴压胀形的数值模拟及加载轨迹优化研究[D]. 刘胜杰.河南科技大学2012
  • [8].三通管缠绕机设计与研究[D]. 卢少春.武汉理工大学2010
  • [9].T型三通管液压成形加载路径优化[D]. 李凯.哈尔滨工业大学2010
  • [10].花键、螺纹冷滚压成形自动建模与仿真系统开发[D]. 李锐.太原科技大学2009
  • 论文详细介绍

    论文作者分别是来自南昌航空大学的华如雨,发表于刊物南昌航空大学2019-07-24论文,是一篇关于型三通管论文,内高压成形论文,壁厚论文,有限元模拟论文,响应面法论文,加载路径论文,南昌航空大学2019-07-24论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自南昌航空大学2019-07-24论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  ;  

    华如雨:基于参数优化的内高压成形T型管壁厚均匀化研究论文
    下载Doc文档

    猜你喜欢