年鹏:石墨烯基复合材料构筑及其低温等离子催化性能研究论文

年鹏:石墨烯基复合材料构筑及其低温等离子催化性能研究论文

本文主要研究内容

作者年鹏(2019)在《石墨烯基复合材料构筑及其低温等离子催化性能研究》一文中研究指出:对羟基苯甲酸酯类化合物作为防腐杀菌剂在食品和日化领域被广泛应用,由于其大量使用且缺乏相应的处理手段,现已在地表水、地下水、饮用水、污水、空气、灰尘及土壤等中可以检测到对羟基苯甲酸酯类化合物,尤其在水体环境中浓度更高。对水体环境安全造成了严重的威胁。石墨烯基复合材料是近些年来材料领域的热点,其在催化降解有机污染物方面有着优异的性能。相较于传统的催化材料,石墨烯基复合材料有着高效、性能稳定等优点。介质阻挡放电(DBD)是产生低温等离子体(NTP)最常用方式之一,DBD诱导产生的NTP(DBD-NTP)中存在着大量不同种类的活性粒子,比通常的化学反应所产生的活性粒子种类更多、活性更强,更易于和所接触的有机物发生反应。与传统的高级氧化方法相比,DBD-NTP具有效率高、操作简单、适用范围广等显著优点。本文以对羟基苯甲酸甲酯(MeP)为研究对象,分别制备并研究了ZnO-rGO、ZnFe2O4-rGO和g-C3N4-rGO三种石墨烯基复合催化材料联合DBD-NTP降解溶液中MeP机理,同时表征了三种石墨烯基复合催化材料的结构和光电性能,最后还探究了反应过程中影响MeP降解的因素以及MeP的降解路径。首先,采用水热法制备了ZnO-rGO纳米片,研究了DBD-NTP联合ZnO-rGO纳米片降解水中MeP的机理。用X射线衍射(XRD)、物理吸附仪、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见吸收光谱、光电流和X射线光电子能谱(XPS)对合成的ZnO-rGO进行了表征。考察了放电功率、MeP初始浓度、初始pH和空气流量对MeP降解效率的影响。结果表明,当放电功率为20 W,空气流量20 L/h,ZnO-rGO纳米片投加量为0.015 g/L,MeP初始浓度为20 mg/L,溶液pH为7.0时,MeP的降解效率在反应15 min时可以达到99%。DBD-NTP联合ZnO-rGO纳米片处理水中MeP的降解效率与单独DBD-NTP处理MeP相比,降解效率提高了45%。DBD-NTP联合ZnO-rGO纳米片MeP降解水中MeP的过程遵循伪一级动力学。同时研究了O3和H2O2的含量在MeP降解过程中的变化,证明了H2O2、O3和·OH在反应中起到重要作用。DBD-NTP联合ZnO-rGO纳米片降解水中MeP的过程中溶液的pH逐渐降低,电导率逐渐增加。采用气相色谱-质谱法(GC-MS)测定了MeP的降解产物,并根据检测到的降解产物推测MeP的降解路径,其主要发生共轭结构破坏、脱甲基化、羟基化、羧基化和开环反应,最后,一部分降解产物被分解为H2O和CO2。之后制备了两种石墨烯基复合材料ZnFe2O4-rGO和g-C3N4-rGO,并用X射线衍射(XRD)、物理吸附仪、扫描电镜(SEM)、透射电镜(TEM)、紫外-可见吸收光谱、光电流和X射线光电子能谱(XPS)表征了两种催化剂的结构和光电性能。DBD-NTP联合ZnFe2O4-rGO和g-C3N4-rGO处理水中MeP与单独DBD-NTP处理水中MeP相比,降解效率分别提高了25%和24%。同时考察了放电功率、MeP初始浓度、初始pH和空气流量对MeP降解的影响。DBD-NTP联合ZnFe2O4-rGO和g-C3N4-rGO降解水中MeP的过程遵循伪一级动力学。研究了O3和H2O2的含量在降解过程中的变化,证明了H2O2、O3和·OH在反应中起到重要作用。DBD-NTP联合ZnFe2O4-rGO和g-C3N4-rGO降解MeP的过程中溶液的pH逐渐降低,电导率逐渐增加。采用GC-MS测定了MeP的降解产物,并根据检测到的降解产物推测MeP的降解路径,其主要发生共轭结构破坏、脱甲基化、羟基化、羧基化和开环反应,一部分降解产物被分解为H2O和CO2。

Abstract

dui qiang ji ben jia suan zhi lei hua ge wu zuo wei fang fu sha jun ji zai shi pin he ri hua ling yu bei an fan ying yong ,you yu ji da liang shi yong ju que fa xiang ying de chu li shou duan ,xian yi zai de biao shui 、de xia shui 、yin yong shui 、wu shui 、kong qi 、hui chen ji tu rang deng zhong ke yi jian ce dao dui qiang ji ben jia suan zhi lei hua ge wu ,you ji zai shui ti huan jing zhong nong du geng gao 。dui shui ti huan jing an quan zao cheng le yan chong de wei xie 。dan mo xi ji fu ge cai liao shi jin xie nian lai cai liao ling yu de re dian ,ji zai cui hua jiang jie you ji wu ran wu fang mian you zhao you yi de xing neng 。xiang jiao yu chuan tong de cui hua cai liao ,dan mo xi ji fu ge cai liao you zhao gao xiao 、xing neng wen ding deng you dian 。jie zhi zu dang fang dian (DBD)shi chan sheng di wen deng li zi ti (NTP)zui chang yong fang shi zhi yi ,DBDyou dao chan sheng de NTP(DBD-NTP)zhong cun zai zhao da liang bu tong chong lei de huo xing li zi ,bi tong chang de hua xue fan ying suo chan sheng de huo xing li zi chong lei geng duo 、huo xing geng jiang ,geng yi yu he suo jie chu de you ji wu fa sheng fan ying 。yu chuan tong de gao ji yang hua fang fa xiang bi ,DBD-NTPju you xiao lv gao 、cao zuo jian chan 、kuo yong fan wei an deng xian zhe you dian 。ben wen yi dui qiang ji ben jia suan jia zhi (MeP)wei yan jiu dui xiang ,fen bie zhi bei bing yan jiu le ZnO-rGO、ZnFe2O4-rGOhe g-C3N4-rGOsan chong dan mo xi ji fu ge cui hua cai liao lian ge DBD-NTPjiang jie rong ye zhong MePji li ,tong shi biao zheng le san chong dan mo xi ji fu ge cui hua cai liao de jie gou he guang dian xing neng ,zui hou hai tan jiu le fan ying guo cheng zhong ying xiang MePjiang jie de yin su yi ji MePde jiang jie lu jing 。shou xian ,cai yong shui re fa zhi bei le ZnO-rGOna mi pian ,yan jiu le DBD-NTPlian ge ZnO-rGOna mi pian jiang jie shui zhong MePde ji li 。yong Xshe xian yan she (XRD)、wu li xi fu yi 、sao miao dian jing (SEM)、tou she dian jing (TEM)、zi wai -ke jian xi shou guang pu 、guang dian liu he Xshe xian guang dian zi neng pu (XPS)dui ge cheng de ZnO-rGOjin hang le biao zheng 。kao cha le fang dian gong lv 、MePchu shi nong du 、chu shi pHhe kong qi liu liang dui MePjiang jie xiao lv de ying xiang 。jie guo biao ming ,dang fang dian gong lv wei 20 W,kong qi liu liang 20 L/h,ZnO-rGOna mi pian tou jia liang wei 0.015 g/L,MePchu shi nong du wei 20 mg/L,rong ye pHwei 7.0shi ,MePde jiang jie xiao lv zai fan ying 15 minshi ke yi da dao 99%。DBD-NTPlian ge ZnO-rGOna mi pian chu li shui zhong MePde jiang jie xiao lv yu chan du DBD-NTPchu li MePxiang bi ,jiang jie xiao lv di gao le 45%。DBD-NTPlian ge ZnO-rGOna mi pian MePjiang jie shui zhong MePde guo cheng zun xun wei yi ji dong li xue 。tong shi yan jiu le O3he H2O2de han liang zai MePjiang jie guo cheng zhong de bian hua ,zheng ming le H2O2、O3he ·OHzai fan ying zhong qi dao chong yao zuo yong 。DBD-NTPlian ge ZnO-rGOna mi pian jiang jie shui zhong MePde guo cheng zhong rong ye de pHzhu jian jiang di ,dian dao lv zhu jian zeng jia 。cai yong qi xiang se pu -zhi pu fa (GC-MS)ce ding le MePde jiang jie chan wu ,bing gen ju jian ce dao de jiang jie chan wu tui ce MePde jiang jie lu jing ,ji zhu yao fa sheng gong e jie gou po huai 、tuo jia ji hua 、qiang ji hua 、suo ji hua he kai huan fan ying ,zui hou ,yi bu fen jiang jie chan wu bei fen jie wei H2Ohe CO2。zhi hou zhi bei le liang chong dan mo xi ji fu ge cai liao ZnFe2O4-rGOhe g-C3N4-rGO,bing yong Xshe xian yan she (XRD)、wu li xi fu yi 、sao miao dian jing (SEM)、tou she dian jing (TEM)、zi wai -ke jian xi shou guang pu 、guang dian liu he Xshe xian guang dian zi neng pu (XPS)biao zheng le liang chong cui hua ji de jie gou he guang dian xing neng 。DBD-NTPlian ge ZnFe2O4-rGOhe g-C3N4-rGOchu li shui zhong MePyu chan du DBD-NTPchu li shui zhong MePxiang bi ,jiang jie xiao lv fen bie di gao le 25%he 24%。tong shi kao cha le fang dian gong lv 、MePchu shi nong du 、chu shi pHhe kong qi liu liang dui MePjiang jie de ying xiang 。DBD-NTPlian ge ZnFe2O4-rGOhe g-C3N4-rGOjiang jie shui zhong MePde guo cheng zun xun wei yi ji dong li xue 。yan jiu le O3he H2O2de han liang zai jiang jie guo cheng zhong de bian hua ,zheng ming le H2O2、O3he ·OHzai fan ying zhong qi dao chong yao zuo yong 。DBD-NTPlian ge ZnFe2O4-rGOhe g-C3N4-rGOjiang jie MePde guo cheng zhong rong ye de pHzhu jian jiang di ,dian dao lv zhu jian zeng jia 。cai yong GC-MSce ding le MePde jiang jie chan wu ,bing gen ju jian ce dao de jiang jie chan wu tui ce MePde jiang jie lu jing ,ji zhu yao fa sheng gong e jie gou po huai 、tuo jia ji hua 、qiang ji hua 、suo ji hua he kai huan fan ying ,yi bu fen jiang jie chan wu bei fen jie wei H2Ohe CO2。

论文参考文献

  • [1].氧化物/钛铌酸盐纳米片异质结材料的组装及光催化性能研究[D]. 耿婷婷.安徽理工大学2019
  • [2].二氧化钛基光催化材料的制备及其性能研究[D]. 王慧珍.天津工业大学2019
  • [3].介孔CuO纳米片的制备、表征及其催化氧化CO性能研究[D]. 周重阳.武汉理工大学2018
  • [4].BiOCl超薄纳米片复合光催化剂的制备及其光降解盐酸四环素性能研究[D]. 黄海.江苏大学2018
  • [5].多孔g-C3N4纳米片的化学制备、掺杂及其光催化性能研究[D]. 胡信德.山东大学2017
  • [6].氧化铁纳米片负载金催化剂制备及催化甲苯氧化性能[D]. 韩文.北京工业大学2014
  • [7].氯氧化铋晶面设计合成及其光催化性能研究[D]. 毛艳鸽.安徽师范大学2019
  • [8].超薄类水滑石纳米片-碳复合物的制备及其电催化性能研究[D]. 孙源.青岛科技大学2019
  • [9].镍基超薄二维材料的合成、表征及电催化氧化尿素/甲醇性能的研究[D]. 杨现鹏.青岛科技大学2019
  • [10].层间距宽化的MX2纳米片的合成和电催化析氢性能研究[D]. 黄艳艳.合肥工业大学2019
  • 论文详细介绍

    论文作者分别是来自合肥工业大学的年鹏,发表于刊物合肥工业大学2019-10-22论文,是一篇关于,合肥工业大学2019-10-22论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自合肥工业大学2019-10-22论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  

    年鹏:石墨烯基复合材料构筑及其低温等离子催化性能研究论文
    下载Doc文档

    猜你喜欢