光纤Bragg光栅在沥青路面性能健康监测中的试验研究

光纤Bragg光栅在沥青路面性能健康监测中的试验研究

论文摘要

本文针对沥青混凝土路面测试应变的要求,设计并制作了一种运用环氧树脂与固化增韧剂作为基体材料进行封装的新型传感器,对基体材料的力学性能进行了研究,研究表明基体材料的极限抗拉强度在1821Mpa,极限抗压强度在7078Mpa,弹性模量在2.83.1Gpa,满足道路施工强度要求,封装材料与沥青混合料之间协调变形较好。设计了传感器标定系统,对传感器进行标定,传感器波长与应变、荷载之间为线性关系,相关系数达到0.99以上,传感器灵敏度系数为1.7085pm/με,比裸光栅的1.1pm/με提高了1.53倍,封装效果明显。同时设计并制作了无外力影响且适用于土木工程内部结构监测的温度传感器,温度灵敏度系数为0.0642nm/℃,是裸光栅灵敏度的6.36倍,温度分辨率为0.1℃,重复特性良好。将研发的应变传感器和温度传感器埋入采用SMA-13制作的车辙试件,分别进行静载、动载实验,静载试验结果表明荷载与沿传感器轴向的微应变之间对应的斜率为0.004με/N,随着荷载的增加内部结构应变不断增加,荷载与应变之间相对应的重复特性、线性良好,传感器测量反应了沥青混凝土真实变化趋势;动载试验结果表明中心波长随着时间呈二次项式规律变化,为研究动载作用下沥青混合料内部结构变化提供了依据,传感器响应良好,没有发生破坏,满足沥青混凝土结构监测的技术要求。最后,采用ansys有限元软件进行仿真分析,有限元分析结果表明静载作用下荷载与应变关系为0.0046με/N,对于设计的传感器需要对荷载与应变进行必要的修正,增加应变传感因子η=0.87。模拟一次动载作用显示有限元计算值较传感器实测结果偏大,但两者之间响应趋势相同符合良好,从理论上证明了传感器实测的准确性。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 研究背景
  • 1.1.1 道路健康监测的重要性
  • 1.1.2 光纤光栅技术的发展
  • 1.2 国内外研究现状
  • 1.2.1 国外研究状况
  • 1.2.2 国内研究状况
  • 1.3 本文构思与研究内容
  • 第二章 光纤Bragg 光栅传感原理与封装材料性能研究
  • 2.1 光纤基本结构与工作原理
  • 2.1.1 光纤基本结构
  • 2.1.2 光纤的工作原理
  • 2.1.3 光纤传感器的基本原理
  • 2.2 光纤Bragg 光栅的传感工作原理
  • 2.2.1 光纤Bragg 光栅的结构与原理
  • 2.2.2 光纤光栅的温度特性
  • 2.2.3 光纤Bragg 光栅轴向应变特性
  • 2.3 封装材料的分析研究
  • 2.3.1 原材料选取
  • 2.3.2 材料力学性能测试
  • 2.4 本章小结
  • 第三章 光纤Bragg 光栅应变传感器设计及性能研究
  • 3.1 传感器设计与封装
  • 3.1.1 光纤Bragg 光栅设计
  • 3.1.2 传感器结构设计
  • 3.1.3 感知元件封装工艺
  • 3.2 传感器应变特性研究
  • 3.2.1 标定试验方法与设计制作
  • 3.2.2 标定实验结果与数据分析
  • 3.2.3 传感器的装配
  • 3.3 传感器温度补偿
  • 3.4 本章小结
  • 第四章 埋入式光纤Bragg 光栅温度传感器的研制
  • 4.1 引言
  • 4.2 温度传感器的研制
  • 4.2.1 传感器的传感特性
  • 4.2.2 传感器的封装结构
  • 4.3 传感器性能试验及数据分析
  • 4.3.1 性能试验
  • 4.3.2 数据分析
  • 4.3.3 外力影响实验
  • 4.4 本章小结
  • 第五章 传感器的应用测试与研究
  • 5.1 沥青混合料试件制作
  • 5.1.1 沥青混合料的级配
  • 5.1.2 沥青混合料试件制作与养护
  • 5.2 试验研究
  • 5.2.1 静载试验
  • 5.2.2 动载试验
  • 5.3 ansys 仿真分析
  • 5.3.1 有限元建模
  • 5.3.2 静载仿真
  • 5.3.3 动载仿真
  • 5.4 本章小结
  • 第六章 总结
  • 参考文献
  • 致谢
  • 在学期间的研究成果及发表的学术论文
  • 相关论文文献

    • [1].Testing the Universality of Free Fall by Comparing the Atoms in Different Hyperfine States with Bragg Diffraction[J]. Chinese Physics Letters 2020(04)
    • [2].Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation[J]. Chinese Physics Letters 2020(07)
    • [3].固定于水面的多个半圆形结构物的水波Bragg反射[J]. 上海交通大学学报 2019(09)
    • [4].基于光纤Bragg光栅传感器的车辆载重动态检测系统的初步开发[J]. 通讯世界 2016(24)
    • [5].Spectral Beam Combining of Fiber Lasers by Using Reflecting Volume Bragg Gratings[J]. Chinese Physics Letters 2016(12)
    • [6].Proton Bragg Peak Irradiation Experiment of Components for Aerospace[J]. Annual Report of China Institute of Atomic Energy 2019(00)
    • [7].光纤Bragg光栅振动传感器的标定与不确定度分析[J]. 机械科学与技术 2020(11)
    • [8].BRIGHT:the three-dimensional X-ray crystal Bragg diffraction code[J]. Nuclear Science and Techniques 2019(03)
    • [9].Periodic structural defects in Bragg gratings and their application in multiwavelength devices[J]. Photonics Research 2016(02)
    • [10].Wave Power Focusing due to the Bragg Resonance[J]. China Ocean Engineering 2017(04)
    • [11].基于光纤Bragg光栅传感器的现役高桩码头结构健康监测系统设计与实施[J]. 水道港口 2016(02)
    • [12].Numerical Simulation of Bragg Reflection Based on Linear Waves Propagation over A Series of Rectangular Seabed[J]. China Ocean Engineering 2008(01)
    • [13].Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chinese Physics Letters 2015(05)
    • [14].An introduction to Bragg diffraction-based cold atom interferometry gravimeter[J]. Instrumentation 2015(04)
    • [15].Interrogating a Fiber Bragg Grating Vibration Sensor by Narrow Line Width Light[J]. Journal of Electronic Science and Technology of China 2008(04)
    • [16].Demodulation System for Fiber Bragg Grating Sensors Using Digital Filtering Technique[J]. Transactions of Tianjin University 2008(01)
    • [17].Modification of Interfacial Performance of Fiber Bragg Grating Embedded in the Composite Materials[J]. Journal of Wuhan University of Technology(Materials Science) 2017(04)
    • [18].Bragg reflection in a quantum periodic structure[J]. Chinese Optics Letters 2015(12)
    • [19].基于光纤Bragg光栅的采动支承压力分布试验研究[J]. 西安科技大学学报 2016(02)
    • [20].低能质子的Bragg曲线测量[J]. 中国原子能科学研究院年报 2017(00)
    • [21].Two-dimensional non-spatial filtering based on holographic Bragg gratings[J]. Chinese Physics B 2010(07)
    • [22].Fiber Bragg Gratings in Small-Core Ge-Doped Photonic Crystal Fibers[J]. Journal of Electronic Science and Technology of China 2008(04)
    • [23].Thermal characteristics of Fabry–Perot cavity based on regenerated fiber Bragg gratings[J]. Chinese Optics Letters 2018(12)
    • [24].Damage and recovery of fiber Bragg grating under radiation environment[J]. Chinese Physics B 2018(09)
    • [25].光纤Bragg光栅倾角传感器的标定与不确定度分析[J]. 光学技术 2017(03)
    • [26].Irradiation effect on strain sensitivity coefficient of strain sensing fiber Bragg gratings[J]. Chinese Physics B 2014(01)
    • [27].基于3G的光纤Bragg光栅地层沉降监测系统[J]. 传感器与微系统 2013(09)
    • [28].Theoretical analysis of polarization properties for tilted fiber Bragg gratings[J]. Science China(Information Sciences) 2010(02)
    • [29].一种基于光纤Bragg光栅传感器的挡土墙变形监测技术[J]. 传感器与微系统 2010(11)
    • [30].Mechanism of Bragg Diffraction-Assisted Light Extraction in GaN-based Light-Emitting Diodes Based on a Self-Consistent Model[J]. Communications in Theoretical Physics 2009(09)

    标签:;  ;  ;  ;  ;  ;  

    光纤Bragg光栅在沥青路面性能健康监测中的试验研究
    下载Doc文档

    猜你喜欢