论文摘要
催化技术是化学工业的基础。催化剂作为现代化工的基石,在化工生产中扮演了极其重要的角色,故而催化剂的研制已经成为现代化学的一个重要组成部分。近年来,新型催化剂研制中的分子设计越来越受到人们的重视。要实现催化剂的分子设计,首先必须了解催化剂的结构和电子性质,以及在催化剂表面发生化学反应的微观机理,才能用以指导新型高效催化剂的设计和制备。在催化剂的各种表征实验中我们可以得到大量有关催化反应的微观信息,但由于目前实验手段的限制,很多微观性质的测定仍然存在很多困难。作为现代化学研究的一个重要手段,量子化学计算则可以在分子水平上提供更详细的信息。近年来,随着计算机软件和硬件技术,以及量子化学方法的迅速发展,量子化学计算在催化剂性质和催化反应机理研究中的应用日益广泛,并取得了大量可喜的成绩。近年来,密度泛函理论(DFT)方法的兴起对量子化学计算方法的发展产生了革命性的变化。密度泛函理论在固体物理和表面化学方面的应用也获得了巨大成功。本文的计算方法理论基础就是DFT。以往对金属及金属氧化物体系表面的模拟,大都采用的是团簇模型,但这种模型不能完整的反映催化剂的特性,计算过程中忽略了表面的弛豫以及周围环境对表面反应活性位的影响。本文采用了超元胞模型,该模型具有周期性的结构,能充分反映催化剂体系的整体特征。在计算过程中还充分考虑了催化剂结构的弛豫,并且加上了一定的真空层,从而更真实的,更完整地反映催化剂表面的特征。低碳烷烃催化转化制备烯烃一直是石油化工领域的研究热点,它将成为新世纪石油化工技术研究开发的重点之一。其中丙烷脱氢制丙烯,乙烷脱氢制乙烯是两个主要的研究方向。传统的制备方法是在高温低压条件下,将烷烃直接加热脱氢。但此反应过程是强吸热过程,能耗很大,而且高温还会导致烷烃的裂解以及深度脱氢反应加剧,不仅使选择性降低还会加剧催化剂表面积碳,从而使催化剂迅速失活。本世纪70年代以来开发的烷烃氧化脱氢制烯烃的新工艺,因其巨大的应用前景,近年来已成为催化领域的研究热点之一。氧化脱氢是指在催化剂作用下,采用适当的氧化剂与低碳烷烃反应生成烯烃和水,其焓变和自由能变化均小于零,为放热反应,无需外界加热,节省了能量,与直接加热脱氢过程相比,可以克服热力学平衡的限制。目前,钒基催化剂是一类低碳烷烃氧化脱氢制烯烃的较好的催化体系。五氧化二钒通过负载或者与其他氧化物混合可以提高催化活性,其中负载型钒基催化剂由于具有机械强度高、热稳定性好、操作简单等原因而得到了深入广泛的研究。但目前对烷烃氧化脱氢反应的研究仍处在催化剂的探索阶段,实现大规模的工业化尚有困难,这主要是由于反应体系中不可避免的深度氧化生成了CO、CO2等副产物,使烯烃的选择性降低。因此,开发一种高活性、高烯烃选择性、高稳定性的新型催化剂,是该技术领域的关键问题,也成为了催化研究领域的热门课题。但遗憾的是,到目前为止,人们对有关烷烃在催化剂表面的深度氧化反应机理了解很少。因此,详细研究低碳烷烃在催化剂表面的深度氧化机理,对于更好的了解烷烃的氧化脱氢反应,为设计制备高效的催化剂无疑具有很重大的意义。本论文的工作主要是用第一性原理的密度泛函理论(DFT)研究低碳烷烃在V2O5(001)表面的氧化脱氢制烯烃和深度氧化机理,结合已有的实验结果,为新催化体系的开发提供重要的微观信息。本文首先在丙烷C-H键活化的研究基础上,对V2O5(001)表面丙烷氧化脱氢过程中的深度氧化反应机理进行了深入的研究。首先考察了从吸附态的异丙氧基开始,脱氢生成丙烯和丙酮这两条不同的反应通道,结果表明它们在V2O5(001)表面是两条竞争通道。计算结果对由Mamoru Ai等人假设的丙酮生成机理提出了不同看法。对于丙酮的继续氧化脱氢反应也进行了计算,结果表明丙酮在原位难以被继续氧化,而倾向于脱离催化剂表面。而脱附态的丙酮则可以被氧化成甲醛和乙酸。对于丙烯深度氧化生成丙烯醛的反应进行了详细的研究。考察了最初的丙烯的甲基C-H键在O(1)和O(2)位的活化反应,发现O(2)原子更容易活化丙烯甲基的C-H键,但活化后得到的丙烯基更容易向O(1)迁移。即使丙烯基暂时与O(2)结合,最终也能通过一个环状的过渡态比较容易的迁移至O(1)位。吸附在O(1)位的丙烯基,可以继续脱氢直到生成产物丙烯醛,活化能为23.8 kcal/mol,产物丙烯醛的脱附能为15.8 kcal/mol.而O(2)位的丙烯基脱氢生成丙烯醛的活化能为37.9 kcal/mol,且产物丙烯醛的脱附会破坏催化剂的表面结构,脱附能高达40.9 kcal/mol,所以排除了在O(2)位生成丙烯醛的可能性。对于停留在催化剂表面尚未脱附的丙烯醛的继续氧化脱氢反应也进行了计算,发现继续氧化脱氢需要很高的活化能,所以认为产物丙烯醛倾向于暂时脱离表面,并带走一个晶格氧原子。对于脱附态的丙烯醛在新鲜的V2O5(001)表面的氧化脱氢反应计算研究后发现,丙烯醛能经历不同的反应路径,被表面晶格氧氧化生成产物丙烯酸,而丙烯酸的脱附仅需要3.2 kcal/mol的脱附能。同时,计算还确定了几条由脱附态丙烯醛氧化生成COx的通道,但从动力学上它们无法与生成丙烯酸的通道竞争。产物丙烯酸暂时脱附后,又将在完整的V2O5(001)表面氧化生成CO2和CH2CHO*,决速步骤位垒是27.8 kcal/mol。作为存在于表面的一种非常丰富的物种,对CH2CHO*的深度氧化也进行了计算,结果表明CH2CHO*可以被表面晶格氧氧化生成HCHO和CO。而HCHO的存在已被Evgenii等人的实验所证实。计算还发现,HCHO可以比较容易的被氧化成OH基团和HCO,而HCO能与表面的晶格氧原子发生剧烈反应,生成CO。这也解释了Evgenii等在实验中发现HCHO寿命很短的原因。计算还发现CO可在V2O5(001)表面的O(1)位被较容易的氧化生成CO2。对乙烷在V2O5(001)表面的氧化脱氢反应机理,也进行了详细的计算研究。通过计算发现,乙烷和丙烷在V2O5(001)表面的氧化脱氢反应遵循相同的反应机理,第一个C-H键活化生成乙醇盐中间体的反应是整个反应的速控步骤。在O(1)位,C-H键活化最可行的机理是自由基机理,位垒是35.1 kcal/mol,而在O(2)位,氧插入机理略占优势,位垒是37.6 kcal/mol。吸附在O(2)位的乙基,通过向邻位晶格氧迁移一个氢原子,可较容易的生成乙烯,所需的位垒为31.6kcal/mol。而O(1)位生成乙烯的位垒为34.1 kcal/mol。乙烷ODH反应的副产物乙醛,可由吸附在O(1)位的乙基脱氢得到,而且比生成乙烯容易,位垒分别为30.8kcal/mol和34.1 kcal/mol。乙醛的生成是个放热过程,它能较稳定的吸附在V2O5表面,将进行深度氧化直至生成CO和CO2。水和乙醛的脱附在V2O5表面造成很多氧的空穴位,气相中的氧气能很容易的氧化表面,氧气的裂解活化能为35.1kcal/mol,整个再氧化过程能释放86.9 kcal/mol能量。决定指前因子的熵效应并不能解释乙烷ODH的速率比丙烷低得多的实验事实,考虑到在各个晶格氧位置上副反应的选择性差异,我们预测,这是由O(1)对乙烷的ODH生成乙烯的选择性较差,大大减少了反应的活性位所造成的。我们还研究了乙烷的深度氧化,并与丙烷的深度氧化机理进行了比较,发现丙烷的深度氧化主要是丙烯被氧化生成了丙烯醛。丙烯醛一旦生成以后,是倾向于脱附,而不是停留在原位继续被氧化。脱附后的丙烯醛很容易被氧化生成丙烯酸。最终的氧化产物COx大都应来自于丙烯酸的氧化。而对于乙烷的氧化脱氢反应,计算发现,副反应主要来自于乙烯的竞争产物乙醛的生成。脱附后的乙醛可以很容易的被氧化生成乙酸,这与前文中脱附态的丙烯醛被氧化生成丙烯酸遵循相同的机理,且反应都非常容易进行。但不同的是,乙醛更容易停留在原位继续进行深度氧化,而不是倾向于脱离表面后再被氧化生成乙酸。计算也发现生成的少量乙酸在V2O5(001)表面难以被继续氧化。所以在乙烷的氧化脱氢反应中,最终的氧化产物COx大都应来自于乙醛的氧化。因此,为了提高乙烷氧化脱氢反应中乙烯的选择性,重点应该设法阻止乙氧基脱氢生成乙醛。本文通过计算低碳烷烃在V2O5(001)表面的氧化脱氢及深度氧化机理,得到了很多重要的结果。其计算结果能从分子水平很合理的解释许多实验现象,因此表明我们计算方法的可信性和可行性,对帮助了解基本的反应机理和指导研制高效新型催化剂都有积极的意义。最后,我们对单原子催化也进行了部分研究,计算了V+离子与SCO分子在气相中的反应。结果表明V+离子催化活化SCO分子中的C-S键和C-O键都遵循插入消去机理。反应过程中存在系间窜越,即最有利的反应通道是:5V++SCO→5IM1→CP1→3IM2→3VS++CO