论文摘要
粉煤灰和矿渣现已成为高性能水泥中必不可少的性能调节型辅助性胶凝材料,确定水泥浆体中粉煤灰或矿渣的反应程度,对评价它们的反应活性及其对该体系结构形成的贡献、研究反应动力学等具有重要意义。由于粉煤灰质量的变异性很大,因地制宜地选取代表性粉煤灰,找出粉煤灰的组成、颗粒级配与反应程度之间的关系就显得非常有必要。本文选取全国有代表性的粉煤灰与矿渣,采用选择性溶解法测定了粉煤灰和矿渣的反应程度,研究了水泥浆体中粉煤灰或矿渣的反应程度与比表面积、掺量、龄期等参数的关系,并建立了关联模型;分析了粉煤灰或矿渣的反应程度、反应深度以及粒径分布参数之间相关关系;探索了粉煤灰与矿渣反应消耗的氢氧化钙的量与粉煤灰或矿渣的反应程度之间的关系以及水泥胶砂强度与反应程度之间的关系;以单位粉磨能耗对反应程度以及水泥胶砂强度的贡献为参数,对粉煤灰和矿渣作为辅助胶凝材料应用进行了能量经济分析。研究结果表明,粉煤灰、矿渣的反应程度与比表面积、掺量以及水化龄期之间近似符合幂函数关系。不同种类粉煤灰的反应程度大小顺序为:中钙型>高钙型>低钙高铝型>低钙中铝型(7d、28d);低钙高铝型>中钙型>高钙型>低钙中铝型(90d)。从反应程度方面来说,粉煤灰的推荐比表面积为:以石景山粉煤灰为代表的低钙高铝型粉煤灰,600±10m2/kg;以宝钢粉煤灰为代表的中钙粉煤灰,600±10m2/kg(90d及以前),500±10m2/kg(180d);以石横粉煤灰为代表的低钙中铝型粉煤灰,700±10 m2/kg(28d及以前),500±10 m2/kg(90d)。矿渣的推荐比表面积为500±10m2/kg。当粉煤灰或矿渣掺量为50%,水胶比为0.5时,粉煤灰以及矿渣在各龄期的反应程度与粒径特征参数呈负相关。在各个粒径特征参数中,表面积平均粒径与粉煤灰或矿渣的反应程度之间联系最紧密。粉煤灰在90d龄期时的反应程度以及矿渣的反应程度均与表面积平均粒径呈线性相关。水泥胶砂抗压强度与粉煤灰或矿渣的反应程度之间呈现出良好的对数关系。因此,表面积平均粒径可作为粉煤灰、矿渣粉体加工的质量控制参数。表面积平均粒径同时兼顾了颗粒分布和比表面积的特点,它比单纯采用勃氏比表面积或筛余作为控制指标要更科学,更能反映粉煤灰和矿渣粉体的微观特性。根据粉煤灰和矿渣的粒径分布参数,可以由粉煤灰或矿渣的反应程度推导出其反应深度。粉煤灰的反应深度大小顺序为:高钙型>中钙型>低钙中铝型>低钙高铝型(7d);中钙型>高钙型>低钙高铝型>低钙中铝型(28d、90d)。随着粉磨时间的增加,粉煤灰的比表面积呈线性增长,矿渣的比表面积呈对数增长。随着粉煤灰或矿渣比表面积的增加,其颗粒均匀性系数亦增加,特征粒径降低;但当比表面积增加到600m2/kg左右时,随着比表面积的提高,颗粒均匀性系数开始下降或基本上不再改变。当粉煤灰掺量为50%、水胶比为0.5时,水泥浆体中氢氧化钙消耗量与粉煤灰的反应程度之间近似服从线性相关。当矿渣掺量为50%、水胶比为0.5时,水泥浆体中氢氧化钙消耗量与矿渣的反应程度的相关性不显著。从单位粉磨电耗对粉煤灰或矿渣的反应程度的增加量的贡献来看,粉煤灰与矿渣的推荐比表面积为:低钙高铝型粉煤灰,600±10m2/kg(1d、3d),700±10m2/kg(7d、14d、28d、60d、90d、180d);中钙型粉煤灰,600±10m2/kg(1d、3d、7d、14d、28d、60d、90d),500±10m2/kg(180d);低钙中铝型粉煤灰,600±10m2/kg(3d), 700±10m2/kg(7d、28d);500±10m2/kg(90d);矿渣:500±10m2/kg。
论文目录
摘要Abstract第1章 绪论1.1 本课题研究背景与意义1.2 水泥基材料中废渣应用研究概况及存在的问题1.2.1 粉煤灰和矿渣在水泥基材料中的应用研究历史1.2.2 粉煤灰和矿渣的特性及分类研究现状1.2.3 粉煤灰和矿渣的掺合料效应研究现状1.2.4 粉煤灰和矿渣的颗粒群分布研究现状1.2.5 粉煤灰和矿渣的活性及其评价研究现状1.2.6 粉煤灰对水泥水化作用的研究现状1.2.7 粉煤灰和矿渣的反应程度研究进展1.2.8 粉煤灰和矿渣的研究中存在的问题1.3 本文的主要研究内容1.4 本文结构第2章 研究方案、原材料、试验仪器及试验方法2.1 引言2.2 研究方案2.3 试验原材料2.3.1 水泥2.3.2 粉煤灰2.3.3 矿渣2.3.4 代表性粉煤灰与矿渣的选取2.3.5 拌合用水与标准砂2.4 试验仪器及试验方法2.4.1 基本性能试验方法2.4.2 水化样测试方法2.5 本章小结第3章 粉煤灰和矿渣的反应程度研究3.1 引言3.2 样品制备与试验方法3.2.1 水化试样制备3.2.2 反应程度测试方法3.2.3 试验配合比3.3 水泥浆体中粉煤灰的反应程度3.3.1 试验结果3.3.2 粉煤灰的比表面积对水泥浆体中粉煤灰的反应程度的影响3.3.3 粉煤灰的掺量对水泥浆体中粉煤灰的反应程度的影响3.3.4 水泥浆体中粉煤灰的反应程度随龄期变化趋势3.3.5 不同类别粉煤灰在水泥浆体中的反应程度3.4 水泥浆体中矿渣的反应程度3.4.1 试验结果3.4.2 矿渣的比表面积对水泥浆体中矿渣的反应程度的影响3.4.3 矿渣的掺量对水泥浆体中矿渣的反应程度的影响3.4.4 水泥浆体中矿渣的反应程度随龄期变化趋势3.5 粉煤灰和矿渣的反应程度随龄期变化规律3.5.1 水泥浆体中粉煤灰的反应程度随龄期变化规律3.5.2 水泥浆体中矿渣的反应程度随龄期变化规律3.6 粉煤灰和矿渣的反应程度随比表面积、掺量及龄期变化规律3.6.1 粉煤灰的比表面积不同时水泥浆体中粉煤灰的反应程度随比表面积及龄期变化规律3.6.2 矿渣的比表面积不同时水泥浆体中矿渣的反应程度随比表面积及龄期变化规律3.6.3 粉煤灰的反应程度随比表面积、掺量及龄期变化规律3.6.4 矿渣的反应程度随比表面积、掺量及龄期变化规律3.7 本章小结第4章 粒径分布与粉煤灰和矿渣的反应程度及反应深度相关关系研究4.1 引言4.2 水泥、粉煤灰和矿渣的粒径分布4.2.1 水泥、粉煤灰和矿渣的粒度体积分布与累积体积分布4.2.2 水泥、粉煤灰和矿渣的粒径特征参数4.2.3 水泥、粉煤灰和矿渣的RRB 粒度分析方程4.3 粉煤灰和矿渣的粒径分布对反应程度的影响4.3.1 粉煤灰和矿渣的粒径特征参数对反应程度的影响4.3.2 粉煤灰和矿渣的粒度体积分布对反应程度的影响4.4 粉煤灰和矿渣的反应程度与反应深度相关关系4.4.1 反应深度计算公式推导4.4.2 反应深度计算结果4.4.3 水泥浆体中粉煤灰的反应深度4.4.4 水泥浆体中矿渣的反应深度4.5 本章小结第5章 结合水与氢氧化钙含量与反应程度的关系5.1 引言5.2 掺粉煤灰的水泥浆体中结合水与氢氧化钙含量5.2.1 试验结果5.2.2 粉煤灰的比表面积对水泥浆体中结合水与氢氧化钙含量的影响5.2.3 粉煤灰的掺量对水泥浆体中结合水与氢氧化钙含量的影响5.2.4 掺粉煤灰的水泥浆体中结合水与氢氧化钙含量随龄期变化趋势5.2.5 粉煤灰的氧化钙含量对水泥浆体中结合水与氢氧化钙含量的影响5.3 掺矿渣的水泥浆体中结合水与氢氧化钙含量5.3.1 试验结果5.3.2 矿渣的比表面积对水泥浆体中结合水与氢氧化钙含量的影响5.3.3 矿渣的掺量对水泥浆体中结合水与氢氧化钙含量的影响5.3.4 掺矿渣的水泥浆体中结合水与氢氧化钙含量随龄期变化趋势5.4 粉煤灰火山灰反应消耗的氢氧化钙含量及矿渣反应消耗氢氧化钙含量5.4.1 粉煤灰火山灰反应消耗的氢氧化钙含量计算结果5.4.2 矿渣反应消耗的氢氧化钙含量计算结果5.4.3 粉煤灰的比表面积对粉煤灰火山灰反应消耗的氢氧化钙含量的影响5.4.4 粉煤灰的掺量对粉煤灰火山灰反应消耗的氢氧化钙含量的影响5.4.5 粉煤灰火山灰反应消耗的氢氧化钙含量随龄期变化趋势5.4.6 粉煤灰的氧化钙含量对粉煤灰火山灰反应消耗的氢氧化钙含量的影响5.4.7 矿渣的比表面积对矿渣反应消耗的氢氧化钙含量的影响5.4.8 矿渣的掺量对矿渣反应消耗的氢氧化钙含量的影响5.4.9 矿渣反应消耗的氢氧化钙含量随龄期变化趋势5.5 粉煤灰火山灰反应消耗的氢氧化钙含量与粉煤灰的反应程度之间的关系5.5.1 掺石景山粉煤灰的水泥浆体中氢氧化钙消耗量与粉煤灰的反应程度之间的关系5.5.2 掺宝钢粉煤灰的水泥浆体中氢氧化钙消耗量与粉煤灰的反应程度之间的关系5.6 矿渣反应消耗的氢氧化钙含量与矿渣的反应程度之间的关系5.7 本章小结第6章 水泥胶砂强度与反应程度相关关系6.1 引言6.2 水泥胶砂强度试验胶凝材料配合比6.3 掺粉煤灰的水泥的胶砂强度6.3.1 试验结果6.3.2 粉煤灰的比表面积对水泥胶砂强度的影响6.3.3 粉煤灰的掺量对水泥胶砂强度的影响6.3.4 掺粉煤灰的水泥的胶砂强度随龄期变化趋势6.3.5 粉煤灰的化学组成对水泥胶砂强度的影响6.4 掺矿渣的水泥的胶砂强度6.4.1 试验结果6.4.2 矿渣的比表面积对水泥胶砂强度的影响6.4.3 矿渣的掺量对水泥胶砂强度的影响6.4.4 掺矿渣的水泥胶砂强度随龄期变化趋势6.5 掺粉煤灰的水泥的胶砂抗压强度与粉煤灰的反应程度的关系6.5.1 粉煤灰的比表面积不同时水泥胶砂抗压强度与粉煤灰的反应程度的关系6.5.2 粉煤灰的掺量不同时水泥胶砂强度与粉煤灰的反应程度的关系6.6 掺矿渣的水泥的胶砂抗压强度与矿渣的反应程度的关系6.6.1 矿渣的比表面积不同时水泥胶砂抗压强度与矿渣的反应程度的关系6.6.2 矿渣的掺量不同时水泥胶砂抗压强度与矿渣的反应程度的关系6.7 本章小结第7章 粉煤灰和矿渣应用的能量经济分析7.1 引言7.2 粉煤灰和矿渣的比表面积随粉磨时间的变化7.2.1 粉煤灰比表面积随粉磨时间的变化7.2.2 矿渣的比表面积随粉磨时间的变化7.3 粉煤灰和矿渣的单位能耗对反应程度及胶砂抗压强度的贡献7.3.1 石景山粉煤灰的单位能耗对粉煤灰的反应程度及胶砂抗压强度的贡献7.3.2 宝钢粉煤灰的单位能耗对粉煤灰的反应程度及胶砂抗压强度的贡献7.3.3 石横粉煤灰的单位能耗对粉煤灰的反应程度及胶砂抗压强度的贡献7.3.4 首钢矿渣的单位能耗对矿渣的反应程度及胶砂抗压强度的贡献7.4 本章小结结论参考文献攻读博士期间所发表的学术论文致谢
相关论文文献
标签:粉煤灰论文; 矿渣论文; 反应程度论文; 反应深度论文; 粒径分布论文; 表面积平均粒径论文; 比表面积论文; 掺量论文;