R~N上一类p(x)-Laplacian方程的正解

R~N上一类p(x)-Laplacian方程的正解

论文摘要

我们在全空间RN上考虑了的一类p(x)-Laplacian方程的正解存在性问题.即如下的非线性p(x)-Laplacian方程.其中λ∈C(RN),λ≥0;g∈C((0,∞)),g≥0为局部H(?)lder连续函数.其中,p(x)为径向对称H(?)lder连续函数,即p(x)=p(|x|)=p(r),1<p-≤p(|x|)≤p+<∞.其中p+=sup p(x),p-=inf p(x).我们主要考虑上述方程具有性质lim|x|→∞u(x)=正常数的解的存在性。对于此类问题,因为考虑的是RN上的非线性方程,所考虑的解u(x)具有性质lim|x|→∞u(x)=正常数。即并非0边值的解,因而不能使用空间W1,p(x)(RN)。因此我们在空间Wloc1,p(x)(RN)中去考虑解的存在性。这样,因为空间Wloc1,p(x)(RN)≠W1,p(x)(RN),同样Wloc1,p(x)(RN)≠D1,p(x)(RN)。在空间Wloc1,p(x)(RN)中无法定义范数,这样就造成用一般的变分法就无法对问题进行处理。因此本文采用上下解方法对方程进行处理.我们首先研究了右端λ为径向对称函数时方程的解。这时我们得到在此条件下方程正解的存在性,及解的一些性质。然后我们再考虑λ为非径向对称函数时方程的解。我们用上下解方法对其进行处理。首先我们把相应的上下解原理推广到p(x)问题上。再利用λ为径向对称函数时方程的解的一些性质去构造一般情形下方程的上下解。并由此得到结论。即此类方程在一定条件下存在无穷多个有界的正解.并且每一个正解在无穷远处都收敛到一个正常数.而且这些解有一个共同的正下界。

论文目录

  • 摘要
  • Abstract
  • 第1章 引言
  • 第2章 预备知识
  • 第3章 径向对称条件下方程解的存在性
  • 第4章 一般情况下方程解的存在性
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
    • [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
    • [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
    • [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
    • [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
    • [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
    • [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
    • [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
    • [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
    • [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
    • [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
    • [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
    • [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
    • [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
    • [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
    • [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
    • [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
    • [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
    • [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
    • [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
    • [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
    • [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
    • [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
    • [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
    • [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
    • [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
    • [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
    • [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
    • [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
    • [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)

    标签:;  ;  

    R~N上一类p(x)-Laplacian方程的正解
    下载Doc文档

    猜你喜欢