模拟矿山酸性废水中重金属化学沉淀去除及污泥表征

模拟矿山酸性废水中重金属化学沉淀去除及污泥表征

论文摘要

化学沉淀法是一种从废水中去除重金属广泛使用的和可靠的技术。一般来说,沉淀法就是将溶解或悬浮在溶液中的污染物作为一种固体,通过过滤,离心及其他分离液体的方法将其沉淀出来的一种方法。在这篇论文中我通过从酸性矿物废水中分离如锌离子,铜离子和铅离子等重金属来检验这种化学沉淀技术的适用性。这里我重研究了三种化学沉淀剂:氢氧化钙,纯碱和硫化钠。如,进行了通过利用一个五烧杯(一公升每个)系列的JAR测试实验,对操作条件如PH值,剂量需要和去除效率进行了研究。将准备好的酸性污染水放到每个烧杯中,加入不同剂量的氢氧化钙,碳酸钠和硫化钠粉末,使重金属以金属碱化物,盐化物和硫化物的形式沉淀出来。氢氧化钙在添加到170,117mg/l会实现金属铜和锌的彻底去除,去除率接近100%。相比于碳酸钠对锌离子和铜离子的去除率(99.9%,99.8%)就好得多。其中将硫化钠沉淀剂添加到174mg/L被认为是治理含有铅金属综合废水的最有效方法之一,铅离子的去除率达到98%。实验结果表明,锌和铜沉淀产生的污泥有很好的污泥沉降脱水性能(浊度,污泥量和Zeta电位)。铅形成超细沉淀(小絮体),很难用沉淀的方法把它分开。一般而言,结果表明,用氢氧化钙和硫化钠处理过的综合废水更容易脱水。正如预料的那样,XRD实验结果表明,用这三种沉淀剂(氢氧化钙,碳酸钠和硫化钠)获得金属污泥的主要成分分别是金属氢氧化物,金属碳酸盐和金属硫化物。然而,沉淀中还含有由金属氢氧化物和碳酸盐自发脱水后的金属氧化物,这是由于其溶解度过低所致。

论文目录

  • Acknowledgement
  • 摘要
  • Abstract
  • Contents
  • List of Figures
  • List of Tables
  • Chapter 1 Introduction
  • 1.1 BACKGROUND INFORMATION
  • 1.2 PROBLEM STATEMENT
  • 1.3 THE SCOPE OF THE STUDY
  • 1.4 OBJECTIVE
  • 1.5 Impact and Contribution
  • Chapter 2 Literature Review
  • 2.1 WATER POLLUTION
  • 2.2 WASTE WATER GENERATION IN TANZANIA
  • 2.3 HEAVY METALS IN WASTEWATER
  • 2.4 MOBILITY OF SOME HEAVY METALS
  • 2.5 HEALTH EFFECTS OF HEAVY METALS
  • 2.6 POLLUTION PREVENTION
  • 2.7 HEAVY METAL-BEARING WASTEWATER TREATMENTMETHODS
  • 2.7.1 CHEMICAL PRECIPITATION & PRODUCTCHARACTERIZATION
  • 2.7.1.1 HYDROXIDE PRECIPITATION
  • 2.7.1.2 SULFIDE PRECIPITATION
  • 2.7.1.3 CARBONATE PRECIPITATION
  • 2.7.2 ION EXCHANGE
  • 2.7.3 REVERSE OSMOSIS
  • 2.7.4 CARBON ADSORPTION
  • 2.7.5 BIOLOGICAL TREATMENT
  • 2.8 PROGRESS IN ACIDIC MINING WASTEWATER TREATMENT
  • Chapter 3 Experimental Materials and methods
  • 3.1 MATERIALS
  • 3.2 METHODOLOGY
  • 3.2.1 LIME PRECIPITATION
  • 3.2.2 SULFIDE PRECIPITATION
  • 3.2.3 CARBONATE PRECIPITATION
  • 3.3 ANALYTICAL PROCEDURES
  • 3.3.1 PH
  • 3.3.2 Atomic Absorption
  • 3.3.3 SLUDGE VOLUME
  • 3.3.4 TURBIDITY
  • 3.3.5 ZETA-POTENTIAL
  • 3.3.6 THERMAL ANALYSIS
  • 3.3.7 X-RAY DIFFRACTION
  • Chapter 4 Results and Discussion
  • 4.1 THE REMOVAL EFFICIENCY OF HEAVY METALS FROM SYNTHETICWASTEWATER
  • 4.1.1 ZINC REMOVAL
  • 4.1.1.1 LIME PRECIPITATION
  • 4.1.1.2 SODIUM SULFIDE PRECIPITATION
  • 4.1.1.3 SODIUM CARBONATE PRECIPITATION
  • 4.1.1.4 SLUDGE CHARACTERISTICS ANDSEDIMENTATION
  • 4.1.1.4.1 ZETA-POTENTIAL
  • 4.1.1.4.2 TURBIDITY
  • 4.1.1.4.3 SLUDGE VOLUME
  • 4.1.1.5 X-RAY DIFFRACTION & THERMAL ANALYSIS
  • 4.1.2 COPPER REMOVAL
  • 4.1.2.1 LIME PRECIPITATION
  • 4.1.2.2 SODIUM SULFIDE PRECIPITATION
  • 4.1.2.3 SODIUM CARBONATE PRECIPITATION
  • 4.1.2.4 SLUDGE CHARACTERISTICS ANDSEDIMENTATION
  • 4.1.2.4.1 ZETA-POTENTIAL
  • 4.1.2.4.2 TURBIDITY
  • 4.1.2.4.3 SLUDGE VOLUME
  • 4.1.2.4.5 X-RAY DIFFRACTION & THERMALANALYSIS
  • 4.1.3 LEAD REMOVAL
  • 4.1.3.1 LIME PRECIPITATION
  • 4.1.3.2 SODIUM SULFIDE PRECIPITATION
  • 4.1.3.3 SODIUM CARBONATE PRECIPITATION
  • 4.1.3.4 SLUDGE CHARACTERISTICS ANDSEDIMENTATION
  • 4.1.3.4.1 ZETA-POTENTIAL
  • 4.1.3.4.2 TURBIDITY
  • 4.1.3.4.3 X-RAY DIFFRACTION AND THERMALANALYSIS
  • Chapter 5 Further Discussions
  • 5.1 LIME PRECIPITATION
  • 5.2 SODIUM SULFIDE PRECIPITATION
  • 5.3 SODIUM CARBONATE PRECIPITATION
  • 5.4 COMPARISON OF THE REMOVAL EFFECIENCY
  • 5.5 SLUDGE CHARACTERISITCS AND SEDIMENTATION
  • Chapter 6 CONCLUSION
  • Reference
  • 相关论文文献

    • [1].Towards real-time detection of wastewater in surface waters using fluorescence spectroscopy[J]. Journal of Environmental Sciences 2019(12)
    • [2].Nanohybrid membrane in algal-membrane photoreactor: Microalgae cultivation and wastewater polishing[J]. Chinese Journal of Chemical Engineering 2019(11)
    • [3].Models to predict sunlight-induced photodegradation rates of contaminants in wastewater stabilisation ponds and clarifiers[J]. Water Science and Engineering 2019(04)
    • [4].Innovatively employing magnetic CuO nanosheet to activate peroxymonosulfate for the treatment of high-salinity organic wastewater[J]. Journal of Environmental Sciences 2020(02)
    • [5].Cellulose-based materials in wastewater treatment of petroleum industry[J]. Green Energy & Environment 2020(01)
    • [6].Optical sensing of explosives in wastewater by competitive complexation[J]. Progress in Natural Science:Materials International 2019(06)
    • [7].Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment[J]. Chinese Chemical Letters 2020(04)
    • [8].Release of ZrO_2 nanoparticles from ZrO_2/Polymer nanocomposite in wastewater treatment processes[J]. Journal of Environmental Sciences 2020(05)
    • [9].Treatment Effect of Pig Manure-derived Biochar-based Metal Catalyst for Pig Breeding Wastewater[J]. Asian Agricultural Research 2020(06)
    • [10].Simultaneous removal of arsenic and antimony from mining wastewater[J]. Journal of Environmental Sciences 2020(07)
    • [11].Catalytic ozonation treatment of papermaking wastewater by Ag-doped NiFe_2O_4 : Performance and mechanism[J]. Journal of Environmental Sciences 2020(11)
    • [12].Investigation and assessment of micropollutants and associated biological effects in wastewater treatment processes[J]. Journal of Environmental Sciences 2020(08)
    • [13].Statistical regression modeling for energy consumption in wastewater treatment[J]. Journal of Environmental Sciences 2019(01)
    • [14].Treatment of hydroxyquinone-containing wastewater using precipitation method with barium salt[J]. Water Science and Engineering 2019(01)
    • [15].Removal of chloride from simulated acidic wastewater in the zinc production[J]. Chinese Journal of Chemical Engineering 2019(05)
    • [16].Pulsed corona discharge for improving treatability of coking wastewater[J]. Journal of Environmental Sciences 2018(02)
    • [17].Performance improvement of hybrid polymer membranes for wastewater treatment by introduction of micro reaction locations[J]. Progress in Natural Science:Materials International 2018(02)
    • [18].Degradation analysis of A~2/O combined with AgNO_3+K_2FeO_4 on coking wastewater[J]. Chinese Journal of Chemical Engineering 2018(07)
    • [19].Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation[J]. Journal of Environmental Sciences 2016(12)
    • [20].Use of sub-micron sized resin particles for removal of endocrine disrupting compounds and pharmaceuticals from water and wastewater[J]. Journal of Environmental Sciences 2017(01)
    • [21].AOX contamination status and genotoxicity of AOX-bearing pharmaceutical wastewater[J]. Journal of Environmental Sciences 2017(02)
    • [22].Physiological and Biochemical Responses of Zizania latifolia to Traditional Chinese Medicine Wastewater[J]. Meteorological and Environmental Research 2017(02)
    • [23].Quantification of hookworm ova from wastewater matrices using quantitative PCR[J]. Journal of Environmental Sciences 2017(07)
    • [24].Non-thermal plasma treatment of Radix aconiti wastewater generated by traditional Chinese medicine processing[J]. Journal of Environmental Sciences 2016(06)
    • [25].Improving biodegradation potential of domestic wastewater by manipulating the size distribution of organic matter[J]. Journal of Environmental Sciences 2016(09)
    • [26].Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process[J]. Journal of Environmental Sciences 2015(07)
    • [27].Annual Report of Airborne Discharge Station for Purified Tritiated Wastewater in 2016[J]. Annual Report of China Institute of Atomic Energy 2016(00)
    • [28].Water,Water Everywhere[J]. Beijing Review 2008(25)
    • [29].Hydroxylated graphene quantum dots as fluorescent probes for sensitive detection of metal ions[J]. International Journal of Minerals Metallurgy and Materials 2020(01)
    • [30].Efficacy assessment of peracetic acid in the removal of synthetic 17α-ethinyl estradiol contraceptive hormone in wastewater[J]. Journal of Environmental Sciences 2020(03)

    标签:;  ;  ;  ;  

    模拟矿山酸性废水中重金属化学沉淀去除及污泥表征
    下载Doc文档

    猜你喜欢