球面上一类非线性椭圆方程正解的唯一性

球面上一类非线性椭圆方程正解的唯一性

论文摘要

本文主要以Bochner-Lichnerowicz-Weitzenbock公式为工具,用分部积分的方法得到了下面的结果。定理 设u是下列方程△gu+nu=uα on Sn (1. 9) 的正解,其中△g是(sn,g)上的Laplace-Betratni算子。则当α≥0,且α≠1时,u为常数.方程(1. 9) 来自于调和平均曲率流自相似解的研究中,同时,用类似的方法,给出了Gidas和Spruck[14] 以下结果的简化证明.定理(Gidas-Spruck) 设u(x)是下列方程△u+uα=0 in Rn的非负C2解,n>2,且1<α<n+2/n-2. 则u(x)≡0.

论文目录

  • 中文摘要
  • 英文摘要
  • 第一节 引言
  • 第二节 相关引理
  • 第三节 定理1. 1的证明
  • 第四节 定理1. 2的证明
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].一类具低阶项的非线性退化椭圆方程解的存在性[J]. 南昌航空大学学报(自然科学版) 2019(04)
    • [2].二非线性椭圆方程的非平凡无穷多解(英文)[J]. 曲阜师范大学学报(自然科学版) 2020(03)
    • [3].一类带有负指数的临界椭圆方程组的解[J]. 中南民族大学学报(自然科学版) 2017(02)
    • [4].一类超临界椭圆方程组正解的存在性[J]. 中北大学学报(自然科学版) 2015(03)
    • [5].一道椭圆方程题的多解探究[J]. 高中生之友 2018(23)
    • [6].对一道电磁感应图象习题的深度探究[J]. 物理教学 2017(02)
    • [7].2015年一道全国高中数学联赛解析几何试题的解法研究[J]. 中学数学月刊 2016(12)
    • [8].评中启思 提升素养[J]. 中学数学月刊 2017(07)
    • [9].关于二次函数零点的一个美妙结论及其应用[J]. 中学数学研究 2017(10)
    • [10].椭圆方程的推导方法研究[J]. 中学数学教学参考 2017(30)
    • [11].解椭圆方程问题的四种方法[J]. 语数外学习(高中版上旬) 2018(10)
    • [12].圆锥曲线中一组结论[J]. 中学生数学 2016(23)
    • [13].解析几何中过定点问题的“另类”解法[J]. 中学生数理化(学习研究) 2017(04)
    • [14].浅谈椭圆方程及其题型求解[J]. 中学生数理化(学习研究) 2017(05)
    • [15].2016年新课标卷Ⅱ圆锥曲线题的新解法[J]. 知音励志 2016(22)
    • [16].高二数学学霸不服演练[J]. 中学生数理化(高二) 2017(Z1)
    • [17].浅析椭圆方程的多种解法[J]. 数理化解题研究 2017(13)
    • [18].探究题型规律,编拟精彩试题[J]. 数学通讯 2017(12)
    • [19].椭圆方程的利用[J]. 中学物理 2009(15)
    • [20].间断系数椭圆方程梯度爆破的数值计算[J]. 高等学校计算数学学报 2020(03)
    • [21].一类四阶椭圆方程的无穷多个解的存在性[J]. 河南教育学院学报(自然科学版) 2020(01)
    • [22].变指数椭圆方程和系统的■恒等式及其应用(英文)[J]. 应用数学 2019(03)
    • [23].椭圆方程之旅[J]. 数学通报 2013(04)
    • [24].四法求椭圆方程[J]. 数理天地(高中版) 2017(10)
    • [25].一类非合作椭圆方程组非平凡解的存在性[J]. 吉林大学学报(理学版) 2013(03)
    • [26].一类带临界指数的凹凸非线性椭圆方程第二个正解的存在性[J]. 西南大学学报(自然科学版) 2012(06)
    • [27].一类含梯度的非线性椭圆方程的边界爆破[J]. 牡丹江大学学报 2012(06)
    • [28].一类非线性椭圆方程爆破解的渐近行为[J]. 南通大学学报(自然科学版) 2012(02)
    • [29].完全非线性一致椭圆方程的边界爆破问题[J]. 山东大学学报(理学版) 2011(06)
    • [30].关于一类四阶椭圆方程组正解存在性的思考[J]. 许昌学院学报 2011(05)

    标签:;  ;  ;  

    球面上一类非线性椭圆方程正解的唯一性
    下载Doc文档

    猜你喜欢