PANI:La2O3体异质结光伏器件的制作与性能研究

PANI:La2O3体异质结光伏器件的制作与性能研究

论文摘要

近年来,有机聚合物太阳能电池的研究备受人们关注。在众多导电聚合物中,聚苯胺(PANI)由于其自身的优异特性,被认为是目前最有希望在实际中得到应用的导电聚合物。本论文以苯胺(AN)为单体,质子酸为H+掺杂剂,过硫酸铵(APS)为氧化剂,用化学法合成了电导率较高的PANI。分别研究了对甲基苯磺酸(p-TSA)、H2SO4、HCl及H3P04等不同种类质子酸以及以p-TSA为H+掺杂剂时,APS的用量对PANI电导率σ的影响。结果表明,以1.00mol·L-1的p-TSA为H+掺杂剂、APS和AN摩尔比nAPS:nAN=1:1时合成的PANI电导率σ最高,为200S.cm-1。扫描电子显微镜(SEM)研究结果表明,在此条件下合成的PANI为直径约60nm的纤维,纤维的分支化程度比较高,这有利于减小PANI的分子链间电阻,提高材料电导率。采用循环伏安(CV)法和紫外-可见(UV-Vis)分光光度法分析了在上述实验条件下合成的PANI的能级结构。根据差热-热重分析(DSC-TG)结果确定了所合成的PANI的玻璃化转变温度。结果表明,PANI的最高占有轨道的能级EHOMO=-4.85eV,最低空轨道的能级ELUMO=-3.20eV,能隙Eg=1.656V。PANI的玻璃化转变温度约为185℃,结构坍缩温度大于225℃。采用溶剂蒸发法制备了以PANI与La203共混活性层为体异质结的光伏器件ITO/PANI:La2O3/ITO。改变活性层中PANI与La203的质量比,在暗箱和模拟太阳光照射的条件下分别测试了器件的电流-电压(I-U)特性曲线。结果表明,当PANI与La203的质量比为1:4时器件的光伏性能最佳,开路电压UOC=117mV,短路电流ISC=53μA,填充因子FF=0.222。研究了La203在700℃下预烧结处理以及ITO/PANI:La2O3/ITO器件在200℃下的退火处理对ITO/PANI:La2O3/ITO光伏性能的影响。X-射线衍射实验结果表明,预烧结后,La203粉体的粒度变化不明显,但纯度增大。SEM实验结果表明,退火有利于PANI:La2O3活性层中材料结构的规整。进行上述两种热处理方法后,ITO/PANI:La2O3/ITO器件的Isc和FF都有明显的、不同程度的增加。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 有机/聚合物太阳能电池的研究背景
  • 1.2 有机/聚合物太阳能电池的工作原理
  • 1.2.1 有机半导体的导电机理
  • 1.2.2 有机太阳能电池器件工作的物理过程
  • 1.2.3 有机/聚合物光伏器件结构
  • 1.2.4 有机/聚合物太阳能电池特性
  • 1.2.5 体异质结太阳能电池国内外研究现状
  • 1.3 聚苯胺的基本介绍
  • 1.3.1 聚苯胺的分子结构
  • 1.3.2 聚苯胺的制备方法
  • 1.3.3 聚苯胺的导电机理
  • 1.3.4 聚苯胺的应用
  • 1.4 纳米氧化镧的基本介绍
  • 1.5 本课题研究的目的和意义
  • 第2章 聚苯胺的合成与性能测试
  • 2.1 实验仪器和试剂
  • 2.2 PANI的合成
  • 2.2.1 PANI的合成方法
  • 2.2.2 不同浓度p-TSA为掺杂剂的PANI的合成
  • APS:nAN比值条件下PANI的合成'>2.2.3 不同nAPS:nAN比值条件下PANI的合成
  • +掺杂剂的PANI的合成'>2.2.4 以不同种类的酸为H+掺杂剂的PANI的合成
  • 2.2.5 PANI修饰Pt电极的制备
  • 2.3 PANI的表征
  • 2.3.1 PANI的室温电导率测试
  • 2.3.2 PANI的SEM实验
  • 2.3.3 循环伏安曲线的测试
  • 2.3.4 紫外-可见分光光谱测试
  • 2.3.5 差热-热重分析
  • 2.4 实验结果与讨论
  • 2.4.1 电导率测定结果分析
  • 2.4.2 PANI的SEM测试结果
  • 2.4.3 PANI的循环伏安(CV)测试结果
  • 2.4.4 PANI的紫外-可见吸收光谱测试结果分析
  • 2.4.5 PANI的热性能分析
  • 2.5 本章小结
  • 2O3/ITO体异质结光伏器件的研究'>第3章 ITO/PANI:La2O3/ITO体异质结光伏器件的研究
  • 3.1 实验仪器及试剂
  • 2O3/ITO体异质结光伏器件的能级结构分析'>3.2 ITO/PANI:La2O3/ITO体异质结光伏器件的能级结构分析
  • 2O3/ITO体异质结光伏器件的制作'>3.3 ITO/PANI:La2O3/ITO体异质结光伏器件的制作
  • 3.3.1 ITO导电玻璃的清洗和导电面的鉴别
  • 2O3/ITO单层器件的制作'>3.3.2 ITO/PANI/ITO和ITO/La2O3/ITO单层器件的制作
  • 2O3/ITO体异质结的制作'>3.3.3 ITO/PANI:La2O3/ITO体异质结的制作
  • 2O3/ITO体异质结光伏器件的特性测试'>3.4 ITO/PANI:La2O3/ITO体异质结光伏器件的特性测试
  • 2O3/ITO单层器件的欧姆接触性能测试'>3.4.1 ITO/PANI/ITO和ITO/La2O3/ITO单层器件的欧姆接触性能测试
  • 2O3/ITO体异质结的整流特性测试'>3.4.2 ITO/PANI:La2O3/ITO体异质结的整流特性测试
  • 2O3/ITO体异质结的负载特性测试'>3.4.3 ITO/PANI:La2O3/ITO体异质结的负载特性测试
  • 2O3/ITO体异质结光伏器件结特性分析'>3.5 ITO/PANI:La2O3/ITO体异质结光伏器件结特性分析
  • 3.5.1 ITO/PANI/ITO单层器件的欧姆接触性能及阻值分析
  • 2O3/ITO单层器件的欧姆接触性能及阻值分析'>3.5.2 ITO/La2O3/ITO单层器件的欧姆接触性能及阻值分析
  • 2O3/ITO体异质结的整流特性分析'>3.5.3 ITO/PANI:La2O3/ITO体异质结的整流特性分析
  • 2O3/ITO体异质结的负载特性分析'>3.5.4 ITO/PANI:La2O3/ITO体异质结的负载特性分析
  • 2O3/ITO器件光伏性能的影响'>3.5.5 光照强度对ITO/PANI:La2O3/ITO器件光伏性能的影响
  • 2O3烧结对ITO/PANI:La2O3/ITO器件光伏性能的影响'>3.6 La2O3烧结对ITO/PANI:La2O3/ITO器件光伏性能的影响
  • 2O3烧结实验'>3.6.1 La2O3烧结实验
  • 2O3的XRD实验结果分析'>3.6.2 烧结前后La2O3的XRD实验结果分析
  • 2O3烧结对ITO/PANI:La2O3/ITO器件性能的影响'>3.6.3 La2O3烧结对ITO/PANI:La2O3/ITO器件性能的影响
  • 2O3/ITO器件性能的影响'>3.7 退火处理对ITO/PANI:La2O3/ITO器件性能的影响
  • 2O3/ITO器件的退火处理'>3.7.1 ITO/PANI:La2O3/ITO器件的退火处理
  • 2O3/ITO器件退火前后的SEM结果分析'>3.7.2 ITO/PANI:La2O3/ITO器件退火前后的SEM结果分析
  • 2O3/ITO器件光伏性能的影响'>3.7.3 退火处理对ITO/PANI:La2O3/ITO器件光伏性能的影响
  • 3.8 本章小结
  • 3.9 实验中不足与展望
  • 3.9.1 实验中不足与改进方向
  • 3.9.2 展望
  • 第4章 结论
  • 参考文献
  • 致谢
  • 相关论文文献

    • [1].ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes[J]. Journal of Energy Chemistry 2019(08)
    • [2].Thermal conductivity of PVDF/PANI-nanofiber composite membrane aligned in an electric field[J]. Chinese Journal of Chemical Engineering 2018(05)
    • [3].Thermal Characteristics of PVA-PANI-ZnS Nanocomposite Film Synthesized by Gamma Irradiation Method[J]. Chinese Physics Letters 2018(11)
    • [4].Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites[J]. Journal of Wuhan University of Technology(Materials Science) 2018(05)
    • [5].Immobilization of PANI on Mesoporous Carbon:Preparation and Supercapacitor Performance[J]. Transactions of Nanjing University of Aeronautics and Astronautics 2018(04)
    • [6].A Self-Powered Breath Analyzer Based on PANI/PVDF Piezo-Gas-Sensing Arrays for Potential Diagnostics Application[J]. Nano-Micro Letters 2018(04)
    • [7].NiCo_2O_4 decorated PANI–CNTs composites as supercapacitive electrode materials[J]. Journal of Energy Chemistry 2017(01)
    • [8].Electrical Conductivity and pH Sensitivity of Ordered Porous Gel Acrylate Polymer Membrane with Nano-PANI Doping[J]. Journal of Harbin Institute of Technology 2017(02)
    • [9].接枝聚合法制备PANI/CeO_2-APTMS复合材料及其电化学性能[J]. 高分子材料科学与工程 2017(07)
    • [10].花状CuS/PANI复合材料的制备及其电磁屏蔽性能研究[J]. 现代化工 2017(11)
    • [11].MnFe_2O_4@PANI@Ag Heterogeneous Nanocatalyst for Degradation of Industrial Aqueous Organic Pollutants[J]. Journal of Materials Science & Technology 2016(02)
    • [12].PANI导电水凝胶的制备及其进展[J]. 高分子通报 2020(06)
    • [13].原位聚合法制备PANI/RGO导电复合材料的性能[J]. 工程塑料应用 2018(03)
    • [14].硅烷偶联剂预处理PANI对水性涂料性能的影响[J]. 精细化工 2017(11)
    • [15].Synthesis and supercapacitor characteristics of PANI/CNTs composites[J]. Chinese Science Bulletin 2010(11)
    • [16].Preparation of Surfactants Directed PANI/In_2O_3 Nanocomposite Thin Films and Its NH_3-Sensing Properties[J]. Journal of Electronic Science and Technology 2010(02)
    • [17].Preparation,Characterization and Comparative NH_3-sensing Characteristic Studies of PANI/inorganic Oxides Nanocomposite Thin Films[J]. Journal of Materials Science & Technology 2010(07)
    • [18].Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl_(16)[J]. 半导体学报 2010(08)
    • [19].Investigation of Novel Short Fiber-like Polyaniline/Cerium Nitrate Composite[J]. Journal of Wuhan University of Technology(Materials Science) 2019(01)
    • [20].Nano-Au@PANI蛋黄空心结构电极材料的构筑及超级电容性能[J]. 材料导报 2018(01)
    • [21].PANI/MoS_2复合材料的制备及其电化学性能研究[J]. 当代化工 2018(05)
    • [22].双脉冲电镀制备PbO_2-PANI复合电极的研究[J]. 化工新型材料 2018(07)
    • [23].Two-dimensional polyaniline nanosheets via liquid-phase exfoliation[J]. Chinese Physics B 2017(04)
    • [24].Preparation and Antibacterial Activity of Three-component NiFe_2O_4@PANI@Ag Nanocomposite[J]. Journal of Materials Science & Technology 2014(07)
    • [25].PMOV_2/PANI/TiO_2复合材料的制备及光催化性能[J]. 化工新型材料 2012(12)
    • [26].Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods[J]. Progress in Natural Science:Materials International 2012(04)
    • [27].PANI/Fe-杭锦2~#土催化剂对乙酸的光催化降解研究[J]. 内蒙古师范大学学报(自然科学汉文版) 2019(05)
    • [28].电场-抽滤法制备VACNTs/PANI复合膜及其热性能研究[J]. 广州化工 2018(15)
    • [29].Effect of CNTs and nano ZnO on physical and mechanical properties of polyaniline composites applicable in energy devices[J]. Progress in Natural Science:Materials International 2016(06)
    • [30].Ternary Fe_3O_4@PANI@Au nanocomposites as a magnetic catalyst for degradation of organic dyes[J]. Science China(Technological Sciences) 2017(05)

    标签:;  ;  ;  ;  ;  

    PANI:La2O3体异质结光伏器件的制作与性能研究
    下载Doc文档

    猜你喜欢