论文摘要
聚1,5-二氨基蒽醌(P1,5-DAAQ)是一种新型导电聚合物材料,其电化学反应过程对应着其类似聚苯胺的导电骨架的掺杂/脱掺杂过程以及蒽醌基团的得失电子过程。这两种过程在共轭体系中的同一分子单元中发生,不但使氨基蒽醌聚合物的结构得到优化,还使其具有很高的电活性,使其在能量存储和电催化等方面表现出优异的性能。电催化氧还原技术是化学修饰电极电催化领域研究的热点问题。醌类化合物修饰电极具有的明显的电催化氧还原活性,引起了电化学工作者的广泛研究。本论文中研究的氨基蒽醌聚合物修饰电极,与其它方法(如吸附、掺杂等)得到的醌类修饰电极比较,具有性质稳定、制备过程简单、活性点位浓度高等优点,而且同时具有类似聚苯胺的长链结构和蒽醌官能团的特性,为制备具有高氧还原催化活性的蒽醌修饰电极的研究提供了新的思路。本论文采用电化学阳极氧化法制备聚1,5-二氨基蒽醌(P1,5-DAAQ)修饰的Pt电极。并采用循环伏安法、计时安培法、电化学交流阻抗法等电化学检测技术,以及扫描电子显微镜、傅立叶红外光谱法等表征方法研究了P1,5-DAAQ修饰的Pt的电化学性质、稳定性,及其对氧2电子还原为过氧化氢的电催化活性,探讨了其在电Fenton技术中应用的可行性。采用循环伏安法可以使1,5-DAAQ单体在Pt电极表面发生电化学氧化聚合,形成黑色的薄层聚合物膜。聚合过程受温度的影响明显,当控制聚合反应在10℃时,可以得到最优的聚合效果。采用扫描电子显微镜、傅立叶红外光谱法以及电化学分析方法研究了P1,5-DAAQ的聚合过程。发现P1,5-DAAQ的聚合过程分为两个阶段:聚合物的成核阶段,即在聚合反应的初期,单体氧化形成聚合点位的核心;包括二维生长期和三维生长期的聚合物的生长阶段。采用电化学检测方法和傅立叶红外光谱法研究了Pt/P1,5-DAAQ电极在不同酸性溶液中的氧化还原行为和稳定性。研究发现,氧化过程与还原过程中,P1,5-DAAQ膜内离子的传输过程是不同的,且与离子的半径关系密切。H+的传输为非扩散控制过程;而阴离子进入和排除聚合物膜的过程则受扩散控制。并建立了用于描述此过程的模型。P1,5-DAAQ膜内水合阴离子的扩散系数符合Cl->SO42->NO3->PO43-的关系。聚合物降解过程的研究中不但考察了P1,5-DAAQ在可逆电位范围内的降解,而且研究了P1,5-DAAQ的阳极过氧化现象。研究发现,在可逆电位区域,P1,5-DAAQ在0.5 mol/LHCl、H2SO4、HNO3以及H3PO4中的降解速率常数分别为2.46、4.93、2.46和2.85×10-4s-1。在比可逆电位更正的电位范围内,P1,5-DAAQ会发生阳极过氧化现象。过氧化过程中P1,5-DAAQ发生了不完全降解,类醌结构被破坏,π键共轭长度降低,聚合物的长链结构被破坏,同时,阴离子结合到聚合物当中。Pt/P1,5-DAAQ电极在0.1 mol/L H2SO4中对氧还原反应具有明显的电催化活性,在0.1 mol/L H2SO4中的氧还原峰电位为0.39 V,氧还原反应以2电子还原为主。循环伏安法、计时安培法和电化学交流阻抗法的研究发现Pt/P1,5-DAAQ电极的电催化氧还原活性受膜的厚度、溶液的pH值的影响明显。不同厚度的P1,5-DAAQ膜表面存在不同的氧传输过程。根据不同厚度的P1,5-DAAQ修饰的Pt电极表面的氧扩散系数、电子传输阻力、氧还原反应速率常数等数据的比较,证明尽管较厚的P1,5-DAAQ提供了更多的真实电极面积和更高的活性点位浓度,短时间内更有利于电催化氧还原反应,但较薄的P1,5-DAAQ修饰的Pt电极平整的表面形貌更有利于氧的传质,使其表现出更好的电催化氧还原性能。Pt/P1,5-DAAQ电极的电催化氧还原的活性随pH值的升高而降低。另外,随着P1,5-DAAQ的降解,其氧还原催化活性也逐渐降低。对Pt/P1,5-DAAQ电极作为氧还原阴极在电Fenton体系中的应用进行了研究。考察了其用于电催化O2生成H2O2时的速率和电流效率及其影响因素。而且,此电极对Fe3+的还原也表现出了明显的电催化活性。并采用电化学阻抗法研究了此电极表面主要还原反应的竞争关系。当此电极作为氧还原阴极用于电Fenton反应时,可以在-0.2到0.1 V的电位范围内,pH值为2-3的酸性溶液中,实现对溴氨酸的降解脱色。并通过对溴氨酸降解动力学的分析,考察不同反应条件对此电Fenton体系氧化降解能力的影响。
论文目录
相关论文文献
- [1].新型光电-Fenton法处理印染废水的研究[J]. 水处理技术 2019(12)
- [2].电—Fenton法降解水中的亚甲基蓝效果实验[J]. 水处理技术 2020(01)
- [3].滑溜水减阻剂的绿色配体-Fenton降黏试验[J]. 油田化学 2020(01)
- [4].Fenton法降解废弃聚乙烯醇面料的实验研究[J]. 环境污染与防治 2020(07)
- [5].Mechanochemically sulfured FeS_(1.92) as stable and efficient heterogeneous Fenton catalyst[J]. Chinese Chemical Letters 2020(07)
- [6].Fabricating Fe_3O_4-schwertmannite as a Z-scheme photocatalyst with excellent photocatalysis-Fenton reaction and recyclability[J]. Journal of Environmental Sciences 2020(12)
- [7].A novel heterogeneous Co(Ⅱ)-Fenton-like catalyst for efficient photodegradation by visible light over extended pH[J]. Science China(Chemistry) 2020(12)
- [8].类Fenton反应法降解DMSO废水的试验研究[J]. 湖北理工学院学报 2020(05)
- [9].Fenton氧化技术处理印染废水的研究[J]. 环保科技 2020(05)
- [10].First principles study of Fenton reaction catalyzed by FeOCl:reaction mechanism and location of active site[J]. Rare Metals 2019(08)
- [11].絮凝-Fenton氧化处理栲胶废水的研究[J]. 中国皮革 2019(07)
- [12].Augmenting Intrinsic Fenton?Like Activities of MOF?Derived Catalysts via N?Molecule?Assisted Self?catalyzed Carbonization[J]. Nano-Micro Letters 2019(04)
- [13].改良Fenton工艺用于化工园区污水深度处理的小试[J]. 环境工程学报 2017(11)
- [14].Fenton法处理苯胺废水最佳条件的研究[J]. 上饶师范学院学报 2017(06)
- [15].水体中有机磷酸酯Fenton、电-Fenton的降解特性[J]. 科学技术与工程 2018(02)
- [16].Different Heterogeneous Fenton Reaction Based on Foam Carrier Loaded with Photocatalysts[J]. Journal of Wuhan University of Technology(Materials Science) 2018(01)
- [17].水处理中电Fenton技术研究进展[J]. 辽宁化工 2018(08)
- [18].Fenton处理印染园区废水的影响因数研究[J]. 化工管理 2016(35)
- [19].高铁酸钾-Fenton联合氧化法对菲的去除[J]. 环境工程学报 2016(11)
- [20].Fenton氧化法深度处理餐厨废水[J]. 环境卫生工程 2017(02)
- [21].Fenton试剂的反应机理及动力学研究进展[J]. 工业水处理 2017(05)
- [22].改进的Fenton法处理难降解有机废水应用进展[J]. 中国环境管理干部学院学报 2017(03)
- [23].电-Fenton法处理水中甜味剂研究[J]. 海峡科学 2017(03)
- [24].混凝与Fenton预处理医药中间体废水研究[J]. 水处理技术 2017(07)
- [25].五氧化二钒类Fenton降解邻苯二甲酸二乙酯的机制研究[J]. 生态毒理学报 2017(03)
- [26].Fenton法处理染发剂废水的试验分析[J]. 资源节约与环保 2017(08)
- [27].Fenton法在无机废水处理中的应用进展[J]. 有色金属工程 2015(06)
- [28].Fenton与类Fenton技术的研究与应用[J]. 广州化工 2016(10)
- [29].印染废水的Fenton及类Fenton处理技术[J]. 印染 2016(15)
- [30].Fenton法处理有机废水的研究进展[J]. 建筑与预算 2016(09)