生物功能化碳纳米管的合成、表征及分析应用

生物功能化碳纳米管的合成、表征及分析应用

论文摘要

碳纳米管(Carbon nanotubes,CNTs)作为吸附剂的应用引起了国内外科学家的广泛关注。碳纳米管凭借其优异的吸附性能,已用于分离富集多种多样的痕量分析物。然而,功能化的碳纳米管用作吸附剂,在高选择性、高灵敏度的分析检测方面,所得到的关注仍然较少。本论文旨在发展生物功能化的碳纳米管的合成方法、表征及其作为新型选择性吸附剂在痕量分析中的应用,主要研究内容和创新点如下:(1)将L-半胱氨酸功能化的碳纳米管用于痕量金属离子的选择性分离与富集。合成了L-半胱氨酸功能化的多壁碳纳米管并通过XPS、FT-IR、XRD和TEM的表征。分别从动态和静态吸附的角度,评价了L-半胱氨酸功能化的多壁碳纳米管的选择性富集与分离重金属的性能。L-半胱氨酸功能化的多壁碳纳米管不受离子强度影响成为了其显著的优点。其在pH 5.0~6.5范围内,L-半胱氨酸功能化的多壁碳纳米管可以有效地富集Cd2+;使用0.5 mol L-1HCl洗脱后,由火焰原子吸收光谱检测。L-半胱氨酸功能化的多壁碳纳米管可以快速地吸附Cd2+。相对于未修饰的碳纳米管,在与其他金属离子共存的抗干扰方面,有10到1600倍性能的增强。此方法已成功应用L-半胱氨酸功能化的多壁碳纳米管作为高选择性吸附剂,在线固相萃取复杂基质中的Cd2+离子。以5.0mL min-1流速富集60 s,富集倍数为33倍。检出限(3σ)为0.28μg L-1,而样品通量为36 h-1。11次重复测定10μg L-1Cd2+精密度为1.6%。所建立的方法成功地用于各种环境和生物样品中的痕量检测。(2)研究了蛋白质功能化的碳纳米管用于痕量金属离子的选择性分离与富集。将构建、表达、提取并纯化得到的组氨酸标签的蛋白质用于多壁碳纳米管的功能化,并利用UV-vis、AFM和XRD等手段进行表征。分别从动态和静态吸附的角度,评价了组氨酸蛋白功能化碳纳米管的性能。在pH 4.0~5.5范围内,组氨酸标签的蛋白质功能化的多壁碳纳米管可以有效地富集Cu2+;在pH 5.0~6.5范围内,可以有效地富集Ni2+。使用0.2 mol L-1咪唑-盐酸洗脱后,由火焰原子吸收光谱检测。组氨酸标签蛋白功能化的的多壁碳纳米管可以快速地吸附Cu2+和Ni2+。因此,相对于未修饰的碳纳米管,在与其他金属离子共存的抗干扰方面分别有20000和1800倍的改善。以5.0 mL min-1流速富集60 s,富集倍数分别为(Cu)29倍,(Ni)28倍。检出限(3σ)分别为:0.31μg L-1(Cu)、0.63μg L-1(Ni),而样品通量为40 h-1。11次重复测定10μg L-1Cu2+、15μg L-1Ni2+精密度分别为:2.4%(Cu)、2.5%(Ni)。此方法已成功应用组氨酸标签蛋白功能化的碳纳米管作为高选择性吸附剂,用于痕量铜和镍在多种环境和生物样品中的测定。(3)构建了集免疫-磁性-荧光为一体的多功能碳纳米管,并建立了痕量溶藻弧菌的快速定量检测方法。合成了免疫-磁性-荧光多壁碳纳米管,并通过UV-vis、SEM、FT-IR、VSM和FL表征。考察了此复合功能材料吸附细菌的行为。材料的功能单元:其一,抗体能够高度专一性的识别抗原,聚乙二醇分子又可以显著地降低非特异性吸附,通过PCR-DNA琼脂糖凝胶电泳来验证来评价免疫-磁性-荧光多壁碳纳米管的选择性吸附性能。其二,在功能化的过程中,仍保留了多壁碳纳米管中的一部分金属颗粒Ni催化剂,作为免疫磁性介质分离致病性菌体。其三,利用高效的荧光有机试剂1-芘丁酸,能够与多壁碳纳米管的侧壁的强π-π堆积作用,既可以转化形成水分散性纳米荧光复合物,又可以成为纳米荧光复合物连接抗体蛋白的“桥梁”。实验测定溶藻弧菌的线性范围为3.0×104~1.5×107 cfu mL-1,检测限(3σ)为8.4×103 cfu mL-1,11次重复测定2.0×105 cfu mL-1溶藻弧菌精密度为1.4%。免疫-磁性-荧光多壁碳纳米管可以应用于痕量溶藻弧菌的快速定量检测。

论文目录

  • 中文摘要
  • Abstract
  • 第一章 绪论
  • 1.1 碳纳米管简介
  • 1.1.1 碳纳米管的结构特征
  • 1.1.2 碳纳米管的制备方法
  • 1.1.3 碳纳米管的性质
  • 1.1.4 碳纳米管的表征
  • 1.1.5 碳纳米管的应用
  • 1.1.5.1 氢气存储
  • 1.1.5.2 催化剂载体
  • 1.1.5.3 电子器件和光学器件
  • 1.1.5.4 碳纳米管的复合物
  • 1.1.5.5 碳纳米微加工
  • 1.1.5.6 导热材料
  • 1.1.5.7 化学和生物传感器
  • 1.1.5.8 药物及基因载体
  • 1.2 碳纳米管功能化的研究现状
  • 1.2.1 碳纳米管的功能化
  • 1.2.1.1 共价功能化
  • 1.2.1.2 非共价功能化
  • 1.3 碳纳米管作为吸附剂的研究进展
  • 1.3.1 碳纳米管作为金属离子的固相萃取吸附剂
  • 1.3.2 碳纳米管作为非金属阴离子的固相萃取吸附剂与传感器
  • 1.3.3 碳纳米管作为有机小分子的固相萃取吸附剂
  • 1.3.4 碳纳米管作为生物大分子的吸附剂
  • 1.3.5 碳纳米管作为气体的吸附剂与传感器
  • 1.4 碳纳米管在微生物检测方面的研究现状
  • 1.4.1 微生物检测
  • 1.4.2 碳纳米管在微生物吸附与检测方面的研究现状
  • 1.5 选题的依据以及创新点
  • 1.5.1 研究意义
  • 1.5.2 基本思路
  • 参考文献
  • 第二章 L-半胱氨酸功能化的多壁碳纳米管的制备、表征及其应用于选择性吸附分离重金属
  • 2.1 引言
  • 2.2 实验部分
  • 2.2.1 材料与试剂
  • 2.2.2 仪器
  • 2.2.3 L-半胱氨酸功能化多壁碳纳米管的合成
  • 2.2.4 表征
  • 2.2.5 静态吸附试验
  • 2.2.6 L-半胱氨酸功能化碳纳米管微柱的制备
  • 2.2.7 在线固相萃取与火焰原子吸收光谱仪联用测定痕量镉的过程
  • 2.2.8 样品处理
  • 2.3 结果与讨论
  • 2.3.1 L-半胱氨酸功能化的多壁碳纳米管合成和表征
  • 2+的吸附容量'>2.3.2 静态、动态测定L-半胱氨酸功能化的多壁碳纳米管对Cd2+的吸附容量
  • 2+的动态吸附容量'>2.3.3 测定L-半胱氨酸功能化的多壁碳纳米管对Cd2+的动态吸附容量
  • 2+'>2.3.4 评价L-半胱氨酸功能化的多壁碳纳米管在线固相萃取Cd2+
  • 2.3.5 离子强度对在线固相萃取的影响
  • 2+的选择性'>2.3.6 L-半胱氨酸功能化多壁碳纳米管在线固相萃取Cd2+的选择性
  • 2.3.7 分析特征量
  • 2.4 结论
  • 参考文献
  • 第三章 组氨酸标签蛋白功能化碳纳米管的合成、表征及其应用于选择性识别吸附铜和镍
  • 3.1 引言
  • 3.2 实验部分
  • 3.2.1 材料与试剂
  • 3.2.2 仪器
  • 3.2.3 组氨酸标记蛋白质的构建,表达,提取和纯化
  • 3.2.3.1 表达载体构建
  • 3.2.3.2 大肠杆菌BL21(DE3)工程菌株E.coli BL21(DE3)/G8的诱导表达
  • 3.2.3.3 蛋白质的粗提取
  • 3.2.3.4 纯化融合组氨酸标记的蛋白质
  • 3.2.4 合成组氨酸标签蛋白功能化的碳纳米管
  • 3.2.5 表征
  • 3.2.6 静态吸附试验
  • 3.2.7 在线固相萃取的组氨酸标签蛋白功能化的碳纳米管微柱及其制备
  • 3.2.8 在线固相萃取与火焰原子吸收光谱仪联用测定痕量铜和镍的过程
  • 3.2.9 样品消化
  • 3.3 结果与讨论
  • 3.3.1 组氨酸标签蛋白功能化的碳纳米管的表征
  • 3.3.2 静态吸附评价
  • 3.3.3 组氨酸标签蛋白功能化碳纳米管对于铜和镍测定的动态吸附容量
  • 2+和Ni2+'>3.3.4 组氨酸标签蛋白功能化的碳纳米管在线固相萃取Cu2+和Ni2+
  • 2+和Ni2+的选择性'>3.3.5 组氨酸标签蛋白功能化的碳纳米管在线固相萃取Cu2+和Ni2+的选择性
  • 3.3.6 选择性吸附的机理
  • 3.3.7 分析特征量
  • 3.4 结论
  • 参考文献
  • 第四章 基于免疫-磁性-荧光多壁碳纳米管的超灵敏检测致病性溶藻弧菌
  • 4.1 引言
  • 4.2 实验部分
  • 4.2.1 试剂和材料
  • 4.2.2 仪器
  • 4.2.3 合成免疫磁性荧光多壁碳纳米管
  • 4.2.4 表征
  • 4.2.5 免疫磁性荧光多壁碳纳米管吸附细菌的镜检实验
  • 4.2.6 干扰菌实验
  • 4.2.6.1 干扰菌吸附实验
  • 4.2.6.2 琼脂糖凝胶的制备
  • 4.2.6.3 PCR扩增
  • 4.2.6.4 DNA琼脂糖凝胶电泳分离
  • 4.2.7 免疫磁性荧光多壁碳纳米管定量检测溶藻弧菌实验
  • 4.3 结果与讨论
  • 4.3.1 免疫磁性荧光多壁碳纳米管合成和表征
  • 4.3.2 pH值的影响
  • 4.3.3 离子强度的影响
  • 4.3.4 干扰菌的影响
  • 4.3.5 分析特征量
  • 4.3.6 对比检测溶藻弧菌的方法
  • 4.4 结论
  • 参考文献
  • 个人简历及科研成果
  • 作者简历
  • 攻读博士学位期间科研成果
  • 致谢
  • 相关论文文献

    • [1].Take precautions against potential threats that carbon nanotubes may bring to you[J]. Science China(Chemistry) 2020(02)
    • [2].Two-dimensional ultrathin MoS_2-modified black Ti~(3+)-TiO_2 nanotubes for enhanced photocatalytic water splitting hydrogen production[J]. Journal of Energy Chemistry 2020(04)
    • [3].Sulfur-deficient Co_9S_8/Ni_3S_2 nanoflakes anchored on N-doped graphene nanotubes as high-performance electrode materials for asymmetric supercapacitors[J]. Science China(Technological Sciences) 2020(04)
    • [4].Enhanced peroxidase-like activity of hierarchical MoS_2-decorated N-doped carbon nanotubes with synergetic effect for colorimetric detection of H_2O_2 and ascorbic acid[J]. Chinese Chemical Letters 2020(05)
    • [5].TGA/Chemometrics addressing innovative preparation strategies for functionalized carbon nanotubes[J]. Journal of Pharmaceutical Analysis 2020(04)
    • [6].Tunable photoacoustic efficiency in infrared of gold nanotubes with gel shells[J]. Chinese Journal of Acoustics 2020(03)
    • [7].Iridic oxide nanoparticles grown in situ on BCN nanotubes as highly efficient dual electrocatalyst for rechargeable lithium-O_2 batteries[J]. Journal of Energy Chemistry 2020(10)
    • [8].N-doped carbon nanotubes formed in a wide range of temperature and ramping rate for fast sodium storage[J]. Journal of Energy Chemistry 2020(10)
    • [9].Facile synthesis of Mo_2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions[J]. Journal of Energy Chemistry 2019(11)
    • [10].Band engineering of double-wall Mo-based hybrid nanotubes[J]. Chinese Physics B 2018(07)
    • [11].Domain wall dynamics in magnetic nanotubes driven by an external magnetic field[J]. Chinese Physics B 2018(07)
    • [12].Analytical solutions for elastic binary nanotubes of arbitrary chirality[J]. Acta Mechanica Sinica 2016(06)
    • [13].Theoretical Investigation of Hydrogen Sulfide Adsorption on the Surface of F Functionalized Carbon and Carbon Silicon Nanotubes (7,0) in the Gas Phase and Water[J]. 结构化学 2017(03)
    • [14].Fine decoration of carbon nanotubes with metal organic frameworks for enhanced performance in supercapacitance and oxygen reduction reaction[J]. Science Bulletin 2017(16)
    • [15].Excellent performance of gas sensor based on In_2O_3–Fe_2O_3 nanotubes[J]. Journal of Semiconductors 2016(01)
    • [16].Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO_2 nanotubes[J]. Chinese Physics B 2016(04)
    • [17].First-principles calculation on electronic properties of B and N co-doping carbon nanotubes[J]. Journal of Semiconductors 2016(03)
    • [18].Effect of hydrogen plasma treatment on the growth and microstructures of multiwalled carbon nanotubes[J]. Nano-Micro Letters 2010(01)
    • [19].Ionic liquid functionalized polymer composite nanotubes toward dye decomposition[J]. Chinese Chemical Letters 2015(08)
    • [20].Excellent ethanol sensing properties based on Er_2O_3-Fe_2O_3 nanotubes[J]. Chinese Physics B 2015(11)
    • [21].Biomimetic carbon nanotubes for neurological disease therapeutics as inherent medication[J]. Acta Pharmaceutica Sinica B 2020(02)
    • [22].MOF derived Co_3O_4/N-doped carbon nanotubes hybrids as efficient catalysts for sensitive detection of H_2O_2 and glucose[J]. Chinese Chemical Letters 2020(03)
    • [23].Improving the fretting biocorrosion of Ti_6Al_4V alloy bone screw by decorating structure optimised TiO_2 nanotubes layer[J]. Journal of Materials Science & Technology 2020(14)
    • [24].Superaligned carbon nanotubes guide oriented cell growth and promote electrophysiological homogeneity for synthetic cardiac tissues[J]. Science Foundation in China 2017(04)
    • [25].Carbon nanotubes as conducting support for potential Mn-oxide electrocatalysts: Influences of pre-treatment procedures[J]. Journal of Energy Chemistry 2016(02)
    • [26].Collective diffusion in carbon nanotubes: Crossover between one dimension and three dimensions[J]. Chinese Physics B 2016(08)
    • [27].A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes[J]. Journal of Energy Chemistry 2015(04)
    • [28].Ultralow-temperature assisted synthesis of single platinum atoms anchored on carbon nanotubes for efficiently electrocatalytic acidic hydrogen evolution[J]. Journal of Energy Chemistry 2020(12)
    • [29].Can amino-functionalized carbon nanotubes carry functional nerve growth factor?[J]. Neural Regeneration Research 2014(03)
    • [30].Toluene-sensing properties of In_2O_3 nanotubes synthesized by electrospinning[J]. Journal of Semiconductors 2014(06)

    标签:;  ;  ;  ;  

    生物功能化碳纳米管的合成、表征及分析应用
    下载Doc文档

    猜你喜欢