定向凝固γ-TiAl基合金片层取向控制

定向凝固γ-TiAl基合金片层取向控制

论文摘要

以γ-TiAl金属间化合物为基的合金由于具有低密度、高弹性模量、优异的高温强度和抗氧化性,是一种极具潜力并且人们寄予厚望的高温结构材料。特别是由γ相和少量α2相所形成的全片层组织材料,显示出良好的室温与高温综合性能。由于这种合金的各向异性,当片层取向合适时,使其更适合于航空发动机叶片等只承受一维载荷的场合。如何获得按一定方向排列的片层组织,是多年来许多专家学者所致力研究的课题。采用籽晶法定向凝固来控制片层组织的排列方向是一种比较成功的方法。本文首先根据片层组织力学性能的各向异性的特点建立了片层最大承载方向的数学模型,导出了不同组织状态下片层的最大承载方向。得出了当γ+α2片层组织中α2相的折算分数大于30%时,其最大承载方向为平行于片层组织方向的结论。这为指导本文进行γ-TiAl基合金的定向凝固实验研究,以获得平行于生长方向的片层组织提供了理论依据。本文提出了利用冷坩埚制备籽晶的新方法。由于冷坩埚的激冷能力强,可以制备出尺寸较大的籽晶。同时由于定向凝固实验与与籽晶制备使用同一个冷坩埚,这就为原位籽晶定向凝固新技术创造了必要的条件。采用刚玉管作铸型进行了籽晶法定向凝固实验,对定向凝固片层组织的取向进行了控制,制备出了片层组织取向与籽晶原始取向一致并平行于定向凝固方向的试样。经显微组织观察,片层组织能在整个定向凝固区间内保持与定向凝固方向平行生长长度达50mm的片层组织。成功地利用刚玉管籽晶定向凝固法实现了γ-TiAl基合金片层组织取向的控制。在用冷坩埚进行定向凝固中,发现其晶体生长机理与现有的籽晶法定向凝固完全不同。由于初始成分过渡区的存在,有可能使籽晶完全失去作用。为此,本文提出了消除定向凝固初始成分过渡区的方法——成分调整法。经过多次实验研究和成分组织分析,解决了消除初始成分过渡区的技术难点,从而消除了初始成分过渡区。实现了定向凝固从一开始就可以进入稳定生长状态,解决了开始部位的组织、成分与稳定生长组织、成分不一致的难题。结合成分调整技术,采用本文提出的冷坩埚原位籽晶定向凝固法,对Ti-46at%Al-1.5at%Mo-1.2at%Si合金片层组织的取向控制进行了实验研究。将制备的籽晶直接用于定向凝固实验,集籽晶制备与定向凝固片层组织控制于一体。使原来由籽晶制备、籽晶加工和定向凝固三步构成的工艺,合并成一步进行,从而显著简化了整个工艺过程,并省去了传统制备籽晶工艺中的籽晶切取过程,避免了由此带来的污染,这会给以后的实际生产应用带来很大的经济效益。实验结果表明,采用冷坩埚原位籽晶定向凝固法必须进行成分调整以消除初始成分过渡区;经成分调整后,籽晶中的片层组织能保持其取向顺利通过重熔界面进入定向凝固区。定向凝固区内平行于生长方向的片层组织能够保持其取向生长至少20mm长度以上。从而表明了采用冷坩埚原位籽晶定向凝固法来控制γ+α2片层组织的取向是完全可行的。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 选题意义与课题背景
  • 1.2 目前国内外研究进展
  • 1.2.1 γ-TiAl 基合金化学成分
  • 1.2.2 γ-TiAl 基合金的力学性能
  • 1.2.3 γ-TiAl 基合金定向凝固组织控制
  • 1.2.4 水冷铜坩埚定向凝固研究进展
  • 1.2.5 γ-TiAl 基合金籽晶法定向凝固存在的几个难点
  • 1.3 研究目标
  • 第2章 TiAl片层取向与承载能力关系的理论分析
  • 2.1 引言
  • 2.2 理论模型与计算
  • 2.2.1 单个γ相晶胞的{1 1 1}面承载能力计算
  • 2相存在时承载能力的计算'>2.2.2 考虑α2相存在时承载能力的计算
  • 2.2.3 定向凝固初生相为β相时最终片层组织性能的计算
  • 2.3 结果讨论
  • 2.4 本章小结
  • 第3章 实验方法及工艺参数优化
  • 3.1 引言
  • 3.2 实验用材料的熔配
  • 3.2.1 TiAl 合金的熔配
  • 3.2.2 Al-Si 中间合金的熔配
  • 3.3 冷坩埚定向凝固试验毛坯件制备
  • 3.4 冷坩埚定向凝固工艺参数的选定
  • 3.4.1 加热功率的确定
  • 3.4.2 熔池金属体积的控制
  • 3.4.3 定向凝固速度的选取
  • 3.5 实验用主要设备及实验手段
  • 3.6 本章小结
  • 第4章 籽晶的制备与片层取向控制
  • 4.1 引言
  • 4.2 实验步骤
  • 4.2.1 材料的准备
  • 4.2.2 籽晶制备
  • 4.3 籽晶法定向凝固片层取向控制
  • 4.4 本章小结
  • 第5章 TiAl合金定向凝固初始成分过渡区控制
  • 5.1 初始成分过渡区的理论分析
  • 5.2 成分调整法
  • 5.2.1 包晶转变时各相平衡成分的确定
  • 5.2.2 成分调整法中各组分加入量计算
  • 5.3 实验结果及分析
  • 5.4 本章小结
  • 第6章 采用籽晶原位定向凝固法实现片层取向控制
  • 6.1 引言
  • 6.2 籽晶原位定向凝固法的实现
  • 6.2.1 籽晶原位定向凝固需要解决的问题
  • 6.2.2 有效籽晶区间位置的测定
  • 6.2.3 籽晶原位定向凝固实验
  • 6.2.4 采用冷坩埚进行籽晶法定向凝固的可行性分析
  • 6.3 本章小结
  • 结论
  • 参考文献
  • 攻读学位期间发表的学术论文
  • 致谢
  • 个人简历
  • 相关论文文献

    • [1].PST TiAl single crystals for high temperature applications[J]. Science Foundation in China 2016(04)
    • [2].Advances in phase relationship for high Nb-containing TiAl alloys[J]. Rare Metals 2016(01)
    • [3].新型超轻TiAl多孔材料的制备及其力学性能[J]. 稀有金属材料与工程 2016(09)
    • [4].γ–TiAl金属间化合物加工的国内外研究现状[J]. 航空制造技术 2020(04)
    • [5].Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy[J]. Rare Metals 2017(04)
    • [6].TiAl金属间化合物纳米粉末的相转变[J]. 稀有金属材料与工程 2015(05)
    • [7].Fabrication of in situ Ti_2AlN/TiAl Composites by Reaction Hot Pressing and Their Properties[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2014(01)
    • [8].A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti_3 Al alloy[J]. Science China(Physics,Mechanics & Astronomy) 2012(02)
    • [9].Structural and Thermodynamic Properties of TiAl intermetallics under High Pressure[J]. Communications in Theoretical Physics 2012(01)
    • [10].Synthesis of C_f/TiAl_3 Composite by Infiltration-In Situ Reaction[J]. Journal of Materials Science & Technology 2009(06)
    • [11].Effects of Nb and Si on high temperature oxidation of TiAl[J]. Transactions of Nonferrous Metals Society of China 2008(03)
    • [12].Oxidation behavior of niobized TiAl by plasma surface alloying[J]. Journal of University of Science and Technology Beijing 2008(05)
    • [13].聚片孪生TiAl单晶及其应用展望[J]. 振动.测试与诊断 2019(05)
    • [14].TiAl合金的热暴露表面及其对室温拉伸性能的影响[J]. 钢铁研究学报 2010(11)
    • [15].TiAl多孔材料的研制[J]. 稀有金属材料与工程 2008(S4)
    • [16].TiAl合金及其复合材料的研究进展与发展趋势[J]. 燕山大学学报 2020(02)
    • [17].Crack propagation mechanism of γ-TiAl alloy with pre-existing twin boundary[J]. Science China(Technological Sciences) 2019(09)
    • [18].不同表面状态和热暴露对γ-TiAl合金疲劳性能的影响[J]. 稀有金属材料与工程 2017(02)
    • [19].Y掺杂γ-TiAl电子结构的第一性原理计算[J]. 稀有金属材料与工程 2017(02)
    • [20].长期热暴露对含钨铌γ-TiAl合金疲劳及表面损伤容限的影响[J]. 中国有色金属学报 2016(06)
    • [21].新型Ti_3AlC_2-Al_2O_3/TiAl_3复合材料的组织结构与性能[J]. 复合材料学报 2015(01)
    • [22].TiAl合金离子渗碳摩擦磨损性能研究[J]. 材料科学与工艺 2011(02)
    • [23].热暴露对铸造TiAl合金表面完整性及拉伸性能的影响[J]. 钢铁研究学报 2011(11)
    • [24].热压反应合成Al_2O_3-Ho_2O_3/TiAl复合材料[J]. 粉末冶金技术 2010(01)
    • [25].Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry 2010(03)
    • [26].High-temperature oxidation behavior of Al_2O_3/TiAl matrix composite in air[J]. Science in China(Series E:Technological Sciences) 2009(05)
    • [27].Fabrication and Mechanical Properties of Al_2O_3/TiAl Composites[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2009(05)
    • [28].Diffusion Bonding of Dissimilar Intermetallic Alloys Based on Ti_2AlNb and TiAl[J]. Journal of Materials Science & Technology 2009(06)
    • [29].Theoretical Calculations for Structural, Elastic and Thermodynamic Properties of γTiAl Under High Pressure[J]. Communications in Theoretical Physics 2008(12)
    • [30].基于最小加工表面裂纹的TiAl合金铣削参数优化[J]. 宇航材料工艺 2020(02)

    标签:;  ;  ;  ;  ;  

    定向凝固γ-TiAl基合金片层取向控制
    下载Doc文档

    猜你喜欢