医学图像分割算法研究及其在心脏分割中的应用

医学图像分割算法研究及其在心脏分割中的应用

论文摘要

医学影像分割是计算机辅助诊断和治疗计划制订中一项非常重要的工作,是医学图像处理与分析的一个重要领域,同时也是计算机辅助诊断与治疗的基础。所谓图像分割就是根据某种均匀性或一致性的原则将图像分成若干个有意义的部分,使得每部分都符合某种一致性的要求。近年来随着医学影像获取技术的不断提高,图像的质量越来越好,分辨率越来越高,细节越来越复杂,使得传统分割算法所需要的时间越来越多,通用性也越来越差。如何高效而又精确的在图像中分割出感兴趣的器官成为国际上一个重要且前沿的研究课题。据世界卫生组织统计,心血管疾病已经成为全世界造成人类非意外死亡的第一大杀手。因此,对心血管疾病的早期诊断和治疗变得非常重要。近年来,国际上出现了许多针对人类心脏中某些解剖结构的分割算法,最为常见的便是针对心房、心室的分割。但是对于计算机辅助诊断、治疗和医生的实际需要,常常需要将整个心脏分割出来。这项工作非常具有挑战性,一方面心脏的解剖结构非常复杂,包含心房、心室、冠状动脉、血管、心包以及瓣膜等结构;另一方面心脏的持续跳动使获得医学影像具有变化的相位特性,难以定位和分割。由于医学影像的成像原理,心房、心室在医学影像中非常明显,很容易识别和分割;而心肌等结构则与周围组织在图像灰度上非常接近,并且存在粘连,从而造成了分割的困难。国际上全心脏分割算法还比较少,也比较不成熟,本课题就是致力于对各种常用分割算法进行分析和调研,研究出一个有效的分割算法,将其应用在全心脏分割中实现对整个心脏的完全分割和心脏组织结构包括心房心室和心肌的自分割,满足计算机辅助诊断、治疗和医生的临床需求,具有很大的科研和临床意义。本文的主要工作和创新点如下:1.介绍国际上常用的医学图像分割算法的研究现状,并着重介绍了基于期望最大化算法(EM Method)和基于水平集方法(Level Set Method)的分割算法。2.根据医学图像分割的特点,对期望最大化算法进行改进和优化,并与原始的期望最大化算法做了对比和评价,使之能更好的实现心脏分割这一研究目标。3.提出了基于改进的期望最大化算法和带形状先验模型的水平集方法的混合分割模型,结合了它们各自的优势,并将其应用在医学图像分割,特别是心脏分割领域中。4.实现人体心脏CT和MRI图像的全分割和自解剖结构的分割。在全心脏分割这一分割领域内的难点上,我们提出了使用基于优化的期望最大化算法和带形状先验模型的水平集混合模型,对心脏的CT和MRI图像进行分割。通过在多组试验数据上的大量实验,结合对算法参数的讨论和与金标准的对比分析,并与其他分割方法做了试验对比和评价,验证了算法的鲁棒性和精确性,确定了本方法的临床应用价值。

论文目录

  • 摘要
  • ABSTRACT
  • 第一章 绪论
  • 1.1 引言
  • 1.2 常用医学成像方式介绍及其常见用途
  • 1.2.1 CT(Computed Tomography)计算机断层扫描
  • 1.2.2 MRI(Magnetic Resonance Imaging)磁共振成像
  • 1.3 常用医学图像分割算法介绍
  • 1.3.1 医学图像分割算法分类
  • 1.3.2 基于区域划分的分割方法(Region Based)
  • 1.3.3 基于边缘/表面的可变形模型分割方法
  • 1.4 心脏分割的特点、研究现状与本文安排
  • 1.4.1 心脏分割的特点
  • 1.4.2 心脏分割的研究现状和问题
  • 1.4.3 全心脏分割研究的意义
  • 1.4.4 本文的主要内容安排
  • 第二章 基于可变形模型的医学图像分割
  • 2.1 引言
  • 2.2 LEVEL SET METHODS 水平集方法
  • 2.2.1 背景介绍
  • 2.2.2 Level Set Methods 水平集方法
  • 2.2.3 无边界的水平集演化停止条件
  • 2.3 本章小结
  • 第三章 基于概率统计学的图像分割算法
  • 3.1 引言
  • 3.2 极大似然估计问题
  • 3.3 EM 期望最大化算法及其于高斯混合模型的应用
  • 3.3.1 EM 期望最大化算法简介
  • 3.3.2 高斯混合模型
  • 3.4 期望最大化算法和高斯混合模型在图像分割上的应用
  • 3.4.1 基于期望最大化算法和高斯混合模型的图像分割
  • 3.4.2 基本分割应用实例
  • 3.5 本章小结
  • 第四章 基于优化的期望最大化算法和带先验指导的水平集方法混合分割模型
  • 4.1 引言
  • 4.2 基于连通域标记算法的图像噪音处理
  • 4.3 期望最大化算法中非可信点处理
  • 4.4 图像噪音处理试验
  • 4.5 带形状先验知识的C-V LEVEL SET 分割模型
  • 4.6 分割结果的评估方法
  • 4.7 本章小结
  • 第五章 实验
  • 5.1 实验环境和数据
  • 5.2 实验安排和步骤
  • 5.3 基于EM 期望最大化算法的分类实验
  • 5.4 非可信点和噪音处理
  • 5.5 分类算法参数和鲁棒性讨论
  • 5.5.1 分类算法参数分析和讨论
  • 5.5.2 非可信点实验分析
  • 5.5.3 噪音处理实验分析和讨论
  • 5.6 带形状先验知识的水平集分割实验
  • 5.7 分割结果和实验分析
  • 第六章 总结与展望
  • 6.1 本文工作总结
  • 6.2 未来工作展望
  • 参考文献
  • 致谢
  • 攻读硕士学位期间的研究成果与已发表或录用的论文
  • 相关论文文献

    • [1].心脏刀刺伤的急救和麻醉处理[J]. 实用临床医学 2019(10)
    • [2].故乡的脉搏,跟祖国的心脏一起跳动[J]. 人民司法 2019(27)
    • [3].基于智慧课堂的“心脏泵血过程”教学设计[J]. 卫生职业教育 2020(10)
    • [4].心脏重塑与代谢的双向调控[J]. 中国动脉硬化杂志 2020(07)
    • [5].精准心脏麻醉在心脏外科手术患者中的有效性及安全性[J]. 心理月刊 2020(15)
    • [6].心脏不好,有必要买台制氧机吗[J]. 江苏卫生保健 2020(08)
    • [7].心脏彩铅解剖图[J]. 中国医学教育技术 2019(01)
    • [8].世界首个3D打印软体心脏诞生[J]. 技术与市场 2019(01)
    • [9].当感染袭击心脏[J]. 心血管病防治知识(科普版) 2016(15)
    • [10].尽管有健康的生活方式,也会有心脏问题吗?[J]. 心血管病防治知识(科普版) 2018(13)
    • [11].饮食与心脏的健康[J]. 心血管病防治知识 2008(12)
    • [12].对心脏有保护作用的五类食物[J]. 心血管病防治知识 2008(06)
    • [13].运动如何使心脏变得健康[J]. 心血管病防治知识 2011(05)
    • [14].长时程心脏不停跳保存技术的实验研究[J]. 微创医学 2016(06)
    • [15].张海涛:心脏重症事业,始于梦想而成于实干[J]. 中国当代医药 2017(05)
    • [16].连续性血液净化在心脏术后严重肾功能衰竭中的应用[J]. 河南医学研究 2017(08)
    • [17].宁夏人民医院心脏学科提振项目[J]. 宁夏医学杂志 2017(05)
    • [18].3D打印心脏技术获突破[J]. 中国总会计师 2017(07)
    • [19].心脏刀刺伤患者的救治[J]. 医疗装备 2017(15)
    • [20].连续性血液净化在心脏术后严重肾功能衰竭中的应用价值[J]. 河南医学研究 2017(13)
    • [21].基于能量融合积分模型的心脏生理物理活动研究[J]. 生物化学与生物物理进展 2017(09)
    • [22].心脏术后发生急性肾损伤的预后危险因素及防治[J]. 心脏杂志 2017(04)
    • [23].首个3D打印柔性心脏诞生 但还不能用于移植[J]. 信息技术与信息化 2017(08)
    • [24].给心脏减龄从这些方面做起[J]. 家庭服务 2016(10)
    • [25].肺癌心脏转移[J]. 临床合理用药杂志 2015(19)
    • [26].心脏“喜欢”适量茶饮[J]. 中国老年 2019(23)
    • [27].心脏彩超可以查出哪些心脏疾病[J]. 保健文汇 2019(09)
    • [28].我在祖国的心脏里[J]. 海内与海外 2019(09)
    • [29].《心脏》[J]. 意林 2020(02)
    • [30].心脏彩超,你了解多少[J]. 家庭生活指南 2020(02)

    标签:;  ;  ;  ;  ;  

    医学图像分割算法研究及其在心脏分割中的应用
    下载Doc文档

    猜你喜欢