代清平:无铅磁电复合薄膜的制备及性能研究论文

代清平:无铅磁电复合薄膜的制备及性能研究论文

本文主要研究内容

作者代清平(2019)在《无铅磁电复合薄膜的制备及性能研究》一文中研究指出:多铁性磁电材料不仅同时具有铁电性和铁磁性,而且还具有磁电耦合效应,能实现磁场对电学性能调控和电场对磁学性能调控,在电子信息功能器件中有广阔的应用前景,引起了广泛关注。磁电复合材料在室温下表现出显著的磁电耦合效应,成为关注的焦点。相比于块体磁电复合材料,磁电复合薄膜与微电子器件的兼容性更好,以及有利于在原子尺度下去理解磁电效应,使得磁电复合薄膜成为磁电材料研究的热点。异质结构的磁电复合薄膜的研究仍处于初级阶段,高质量的异质结构磁电复合薄膜的生长控制仍是基础和关键。制备高质量的异质结构磁电复合薄膜仍是磁电材料研究的难点和热点。目前,高性能多铁性磁电复合薄膜主要为含铅的磁电复合体系,考虑到铅对环境的影响,寻找高质量的无铅磁电复合薄膜迫在眉睫。对于BaTiO3(BTO)基无铅磁电复合材料的研究虽然起步较早,但对于高性能的BTO基磁电复合薄膜研究较少,特别是具有优异磁电耦合性能且具有较高居里温度的BTO基异质结构的磁电复合薄膜鲜有报道。本文以掺杂后的BTO基体系为铁电相,NiFe2O4(NFO)作为铁磁相,采用脉冲激光沉积法(PLD)制备高质量的2-2型层状异质结构磁电复合薄膜,构建环境友好型磁电复合薄膜材料。论文的主要研究工作和结果如下:1.成功制备了择优取向、性能优异的BTO基铁电薄膜。首先,在A和B位分别使用Ca2+和Zr4+对BTO进行替代掺杂,采用PLD在(001)-SRO/STO单晶基片上制备出Ba0.85Ca0.15Ti0.9Zr0.1O3(BCZT)择优取向的层状异质结构无铅铁电薄膜。系统地研究了激光能量、溅射频率、沉积温度等沉积参数对BCZT薄膜性能的影响,优化了BCZT薄膜的生长工艺。BCZT薄膜表现出优异的电学性能,但居里温度较低。其次,采用Na0.5Bi0.5TiO3(NBT)与BTO体系进行复合,制备了富BTO相的0.8BaTiO3-0.2Na0.5Bi0.5TiO3(0.8BT–0.2NBT)和0.65BaTiO3-0.35Na0.5Bi0.5TiO3(0.65BT–0.35NBT)铁电薄膜。两种薄膜均表现出优异的电学性能和较高的居里温度,特别是0.8BT–0.2NBT和0.65BT–0.35NBT的剩余极化强度分别达到Pr32.4μC/cm2和Pr38.1μC/cm2。引入NBT相是提高BTO基铁电材料的电学性能和居里温度的重要方式之一。2.研究了BTO基磁电复合薄膜的磁电性能。基于力学参数模型对BTO基层状复合薄膜的磁电效应进行理论计算研究,初步判断铁磁层和铁电层的体积接近相等时,磁电性能最好,为构建BTO基磁电复合薄膜提供了指导。然后,采用PLD制备了外延生长的2-2型NFO/BCZT异质结构复合薄膜。NFO/BCZT复合薄膜具有良好的铁电、压电、铁磁性能及优异的磁电耦合性能(αE93mV·cm─1·Oe─1),NFO/BCZT复合薄膜为设计新型多铁电子器件提供了一种选择。3.探索了BTO基磁电复合薄膜磁电性能增强和居里温度提高的机制。采用PLD在(001)-SRO/STO单晶基片上制备了具有高居里温度的NFO/0.8BT–0.2NBT无铅磁电复合薄膜。研究了NFO/BTO和NFO/0.8BT–0.2NBT磁电复合薄膜的结构、形貌、介电、铁电、压电、铁磁和磁电耦合性能。结果表明:(1)NFO/0.8BT–0.2NBT磁电复合薄膜的居里温度(Tc232°C)明显高于NFO/BTO磁电复合薄膜的居里温度(Tc120°C)。具有高居里温度的NBT(Tc320°C)相的引入,使BTO基磁电复合薄膜的居里温度得到了显著的提高。(2)NFO/0.8BT–0.2NBT磁电复合薄膜的铁电、压电和磁电耦合性能都优于NFO/BTO复合薄膜。在BTO相中引入NBT相提高了BTO基铁电材料的铁电和压电性能,从而有效地增强了磁电耦合性能。4.研究了沉积顺序对BTO基2-2型层状磁电复合薄膜磁电性能的影响。采用PLD在(001)-SRO/STO单晶基片上制备了不同生长顺序的0.65BT–0.35NBT/NFO(以0.65BT–0.35NBT为顶层)和NFO/0.65BT–0.35NBT(以NFO为顶层)异质结构的无铅磁电复合薄膜,探索了铁磁相和铁电相不同的生长顺序对磁电性能影响的物理机制。研究结果表明:(1)0.65BT–0.35NBT/NFO和NFO/0.65BT–0.35NBT异质结构磁电复合薄膜均表现为沿c轴择优取向外延生长结构。两种异质结构的磁电复合薄膜均表现出良好的介电、铁电、铁磁性能,特别是优异的铁电性能(Pr27.3μC/cm2,Pr31.8μC/cm2)。(2)不同的生长顺序NFO有不同的晶格畸变,有较小NFO晶格畸变的NFO/0.65BT–0.35NBT薄膜的磁性矫顽场Hc显著低于0.65BT–0.35NBT/NFO薄膜的Hc,表明其磁畴更容易翻转。(3)不同的生长顺序对磁电耦合性能有明显的影响,NFO/0.65BT–0.35NBT异质结构的磁电耦合性能优于0.65BT–0.35NBT/NFO异质结构的磁电耦合性能,这是由于不同的生长顺序,NFO受到衬底约束作用不同的结果。

Abstract

duo tie xing ci dian cai liao bu jin tong shi ju you tie dian xing he tie ci xing ,er ju hai ju you ci dian ou ge xiao ying ,neng shi xian ci chang dui dian xue xing neng diao kong he dian chang dui ci xue xing neng diao kong ,zai dian zi xin xi gong neng qi jian zhong you an kuo de ying yong qian jing ,yin qi le an fan guan zhu 。ci dian fu ge cai liao zai shi wen xia biao xian chu xian zhe de ci dian ou ge xiao ying ,cheng wei guan zhu de jiao dian 。xiang bi yu kuai ti ci dian fu ge cai liao ,ci dian fu ge bao mo yu wei dian zi qi jian de jian rong xing geng hao ,yi ji you li yu zai yuan zi che du xia qu li jie ci dian xiao ying ,shi de ci dian fu ge bao mo cheng wei ci dian cai liao yan jiu de re dian 。yi zhi jie gou de ci dian fu ge bao mo de yan jiu reng chu yu chu ji jie duan ,gao zhi liang de yi zhi jie gou ci dian fu ge bao mo de sheng chang kong zhi reng shi ji chu he guan jian 。zhi bei gao zhi liang de yi zhi jie gou ci dian fu ge bao mo reng shi ci dian cai liao yan jiu de nan dian he re dian 。mu qian ,gao xing neng duo tie xing ci dian fu ge bao mo zhu yao wei han qian de ci dian fu ge ti ji ,kao lv dao qian dui huan jing de ying xiang ,xun zhao gao zhi liang de mo qian ci dian fu ge bao mo pai zai mei jie 。dui yu BaTiO3(BTO)ji mo qian ci dian fu ge cai liao de yan jiu sui ran qi bu jiao zao ,dan dui yu gao xing neng de BTOji ci dian fu ge bao mo yan jiu jiao shao ,te bie shi ju you you yi ci dian ou ge xing neng ju ju you jiao gao ju li wen du de BTOji yi zhi jie gou de ci dian fu ge bao mo xian you bao dao 。ben wen yi can za hou de BTOji ti ji wei tie dian xiang ,NiFe2O4(NFO)zuo wei tie ci xiang ,cai yong mai chong ji guang chen ji fa (PLD)zhi bei gao zhi liang de 2-2xing ceng zhuang yi zhi jie gou ci dian fu ge bao mo ,gou jian huan jing you hao xing ci dian fu ge bao mo cai liao 。lun wen de zhu yao yan jiu gong zuo he jie guo ru xia :1.cheng gong zhi bei le ze you qu xiang 、xing neng you yi de BTOji tie dian bao mo 。shou xian ,zai Ahe Bwei fen bie shi yong Ca2+he Zr4+dui BTOjin hang ti dai can za ,cai yong PLDzai (001)-SRO/STOchan jing ji pian shang zhi bei chu Ba0.85Ca0.15Ti0.9Zr0.1O3(BCZT)ze you qu xiang de ceng zhuang yi zhi jie gou mo qian tie dian bao mo 。ji tong de yan jiu le ji guang neng liang 、jian she pin lv 、chen ji wen du deng chen ji can shu dui BCZTbao mo xing neng de ying xiang ,you hua le BCZTbao mo de sheng chang gong yi 。BCZTbao mo biao xian chu you yi de dian xue xing neng ,dan ju li wen du jiao di 。ji ci ,cai yong Na0.5Bi0.5TiO3(NBT)yu BTOti ji jin hang fu ge ,zhi bei le fu BTOxiang de 0.8BaTiO3-0.2Na0.5Bi0.5TiO3(0.8BT–0.2NBT)he 0.65BaTiO3-0.35Na0.5Bi0.5TiO3(0.65BT–0.35NBT)tie dian bao mo 。liang chong bao mo jun biao xian chu you yi de dian xue xing neng he jiao gao de ju li wen du ,te bie shi 0.8BT–0.2NBThe 0.65BT–0.35NBTde sheng yu ji hua jiang du fen bie da dao Pr32.4μC/cm2he Pr38.1μC/cm2。yin ru NBTxiang shi di gao BTOji tie dian cai liao de dian xue xing neng he ju li wen du de chong yao fang shi zhi yi 。2.yan jiu le BTOji ci dian fu ge bao mo de ci dian xing neng 。ji yu li xue can shu mo xing dui BTOji ceng zhuang fu ge bao mo de ci dian xiao ying jin hang li lun ji suan yan jiu ,chu bu pan duan tie ci ceng he tie dian ceng de ti ji jie jin xiang deng shi ,ci dian xing neng zui hao ,wei gou jian BTOji ci dian fu ge bao mo di gong le zhi dao 。ran hou ,cai yong PLDzhi bei le wai yan sheng chang de 2-2xing NFO/BCZTyi zhi jie gou fu ge bao mo 。NFO/BCZTfu ge bao mo ju you liang hao de tie dian 、ya dian 、tie ci xing neng ji you yi de ci dian ou ge xing neng (αE93mV·cm─1·Oe─1),NFO/BCZTfu ge bao mo wei she ji xin xing duo tie dian zi qi jian di gong le yi chong shua ze 。3.tan suo le BTOji ci dian fu ge bao mo ci dian xing neng zeng jiang he ju li wen du di gao de ji zhi 。cai yong PLDzai (001)-SRO/STOchan jing ji pian shang zhi bei le ju you gao ju li wen du de NFO/0.8BT–0.2NBTmo qian ci dian fu ge bao mo 。yan jiu le NFO/BTOhe NFO/0.8BT–0.2NBTci dian fu ge bao mo de jie gou 、xing mao 、jie dian 、tie dian 、ya dian 、tie ci he ci dian ou ge xing neng 。jie guo biao ming :(1)NFO/0.8BT–0.2NBTci dian fu ge bao mo de ju li wen du (Tc232°C)ming xian gao yu NFO/BTOci dian fu ge bao mo de ju li wen du (Tc120°C)。ju you gao ju li wen du de NBT(Tc320°C)xiang de yin ru ,shi BTOji ci dian fu ge bao mo de ju li wen du de dao le xian zhe de di gao 。(2)NFO/0.8BT–0.2NBTci dian fu ge bao mo de tie dian 、ya dian he ci dian ou ge xing neng dou you yu NFO/BTOfu ge bao mo 。zai BTOxiang zhong yin ru NBTxiang di gao le BTOji tie dian cai liao de tie dian he ya dian xing neng ,cong er you xiao de zeng jiang le ci dian ou ge xing neng 。4.yan jiu le chen ji shun xu dui BTOji 2-2xing ceng zhuang ci dian fu ge bao mo ci dian xing neng de ying xiang 。cai yong PLDzai (001)-SRO/STOchan jing ji pian shang zhi bei le bu tong sheng chang shun xu de 0.65BT–0.35NBT/NFO(yi 0.65BT–0.35NBTwei ding ceng )he NFO/0.65BT–0.35NBT(yi NFOwei ding ceng )yi zhi jie gou de mo qian ci dian fu ge bao mo ,tan suo le tie ci xiang he tie dian xiang bu tong de sheng chang shun xu dui ci dian xing neng ying xiang de wu li ji zhi 。yan jiu jie guo biao ming :(1)0.65BT–0.35NBT/NFOhe NFO/0.65BT–0.35NBTyi zhi jie gou ci dian fu ge bao mo jun biao xian wei yan czhou ze you qu xiang wai yan sheng chang jie gou 。liang chong yi zhi jie gou de ci dian fu ge bao mo jun biao xian chu liang hao de jie dian 、tie dian 、tie ci xing neng ,te bie shi you yi de tie dian xing neng (Pr27.3μC/cm2,Pr31.8μC/cm2)。(2)bu tong de sheng chang shun xu NFOyou bu tong de jing ge ji bian ,you jiao xiao NFOjing ge ji bian de NFO/0.65BT–0.35NBTbao mo de ci xing jiao wan chang Hcxian zhe di yu 0.65BT–0.35NBT/NFObao mo de Hc,biao ming ji ci chou geng rong yi fan zhuai 。(3)bu tong de sheng chang shun xu dui ci dian ou ge xing neng you ming xian de ying xiang ,NFO/0.65BT–0.35NBTyi zhi jie gou de ci dian ou ge xing neng you yu 0.65BT–0.35NBT/NFOyi zhi jie gou de ci dian ou ge xing neng ,zhe shi you yu bu tong de sheng chang shun xu ,NFOshou dao chen de yao shu zuo yong bu tong de jie guo 。

论文参考文献

  • [1].高性能聚酰亚胺/冠醚复合薄膜的制备与性能[D]. 石楚琪.华南理工大学2019
  • [2].无机化合物纳米粒子杂化PI和复合薄膜的制备与介电性能[D]. 王相文.哈尔滨理工大学2018
  • [3].MWNTs表面态对聚酰亚胺基复合薄膜微观结构及阻变特性影响[D]. 刘媛媛.哈尔滨理工大学2018
  • [4].二氧化钒复合薄膜的结构设计及光电性能评价[D]. 孙光耀.中国科学院大学(中国科学院上海硅酸盐研究所)2018
  • [5].纳米软磁复合薄膜的PLD法制备及性能研究[D]. 白国华.浙江大学2017
  • [6].基于多层复合控释技术的PP/PVA/PP活性包装复合薄膜制备分析及其应用研究[D]. 陈晨伟.上海海洋大学2018
  • [7].零维二维纳米材料协同改性聚酰亚胺复合薄膜微结构与电学性能研究[D]. 夏旭.哈尔滨理工大学2019
  • [8].钛酸钡铁电薄膜与钛酸钡-铁酸钴磁电薄膜的制备及性能研究[D]. 杨茜.山东大学2019
  • [9].PVDF基有机复合薄膜的介电储能性能及其松弛行为研究[D]. 赵小佳.燕山大学2016
  • [10].石墨烯基纳米复合薄膜的设计、制备及气敏特性研究[D]. 叶宗标.电子科技大学2018
  • 读者推荐
  • [1].BiFeO3-BaTiO3基高温无铅压电陶瓷制备及掺杂改性[D]. 程帅.北京科技大学2019
  • [2].高粘度微细液滴3D打印复合驱动喷射系统关键技术研究[D]. 赵翔.北京科技大学2019
  • [3].Tb掺杂的锆钛酸钡钙陶瓷及薄膜的铁电和压电性能研究[D]. 路浩为.哈尔滨理工大学2019
  • [4].BNT-BT基反铁电储能陶瓷的设计、制备及电学性能研究[D]. 王永锋.西安理工大学2018
  • [5].铁酸铋—钛酸钡陶瓷磁电耦合性能研究[D]. 潘祺.中国科学技术大学2019
  • [6].磁电复合材料多场耦合有限元分析及器件设计[D]. 文建彪.兰州大学2019
  • [7].含软铋矿结构极性陶瓷的压电性能与机理研究[D]. 颜士瑞.山东大学2019
  • [8].钛酸钡铁电薄膜与钛酸钡-铁酸钴磁电薄膜的制备及性能研究[D]. 杨茜.山东大学2019
  • [9].铌酸钾钠基无铅压电陶瓷的制备与物性的研究[D]. 姚卫增.山东大学2019
  • [10].基于磁致伸缩/压电层状复合材料的磁电效应研究[D]. 郁国良.电子科技大学2018
  • 论文详细介绍

    论文作者分别是来自贵州大学的代清平,发表于刊物贵州大学2019-07-16论文,是一篇关于多铁性论文,磁电耦合论文,异质结论文,复合薄膜论文,脉冲激光沉积法论文,贵州大学2019-07-16论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自贵州大学2019-07-16论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    代清平:无铅磁电复合薄膜的制备及性能研究论文
    下载Doc文档

    猜你喜欢