检测甲胎蛋白用新型生物传感器的制备和表征

检测甲胎蛋白用新型生物传感器的制备和表征

论文题目: 检测甲胎蛋白用新型生物传感器的制备和表征

论文类型: 博士论文

论文专业: 材料学

作者: 缪煜清

导师: 官建国

关键词: 生物传感器,普鲁士兰,聚苯胺,离子敏场效应管,阻抗,循环伏安

文献来源: 武汉理工大学

发表年度: 2005

论文摘要: 在怀孕的后期,对母体中的α-甲胎蛋白(α-fetoprotein,AFP)的检测可以在早期发现婴儿的脑和脊柱发育缺陷。正常的成人体内,异常的甲胎蛋白浓度常常意味着一些恶性疾病,比如前列腺癌及肝癌等。酶联免疫吸附(enzyme-linked immunoabsorbent assay,ELISA)是AFP检测的传统方法,但是这种方法操作繁琐、时间长,而且涉及到许多昂贵的生化试剂。近年来,生物传感器在医疗、生物和环境等领域取得了显著的进展。具有特异性识别能力的生物成分,和各种转换器相结合,形成了当前快速发展的生物传感器领域。电化学免疫检测方法具有安全、经济、灵敏度高,操作简单方便等特点,它在近年来吸引了人们的研究兴趣。 为此,本论文分别应用有机化合物普鲁士兰、导电高分子聚苯胺和注氧隔离技术获得的硅材料制备了三种电化学免疫生物传感器,实现AFP的快速检测。 首先,利用普鲁士兰制备电化学免疫传感器。结合一步三明治ELISA方法和一次性使用的丝网印刷电极技术,实现血液中AFP浓度的快速检测。普鲁士兰修饰电极,具有优越的过氧化氢的催化性能,可以在较低的电压下检测标记抗体的葡萄糖氧化酶反应生成的过氧化氢,降低了溶液中其他易氧化物质的干扰。利用流动进样分析技术,整个分析过程可以在30分钟内完成,而传统方法大概需要2小时。检测范围是5到500 ng/ml,符合临床检验适用范围。 聚苯胺和硅材料进一步用于制备免标记的免疫生物传感器,并用于AFP的检测。利用循环伏安方法将苯胺聚合到丝网印刷碳电极的表面并实现单克隆抗体在聚苯胺膜表面的固定。通过扫描电镜(Scanning electron microscopy,SEM),傅里叶红外光谱(Fourier infrared spectroscopy,FTIR)以及光电子能谱

论文目录:

Candidate's Declaration

Abstract

Table of Contents

List of Figures

List of Tables

Chapter 1 Introduction

1.1 Immunoassay for α-Fetoprotein

1.2 Introduction to Biosensors

1.2.1 Historical Development

1.2.2 What is a Biosensor

1.2.3 Working Principles of Biosensors

1.2.4 Trends for the Development of Biosensors

1.2.5 Affinity Biosensors

1.2.5.1 Labeled Affinity Biosensors

1.2.5.2 Free-label Affinity Biosensors

1.3 Ion-Sensitive Field Effect Transducers (ISFETs)

1.3.1 Basic Principles of ISFETs

1.3.2 ISFET based Biosensors

1.3.3 Recently Development of ISFET Technology

1.4 Electrochemical Impedance Spectroscopy (EIS)

1.4.1 Impedance Definition and Concept of Complex Impedance

1.4.1.1 Impedance Theory

1.4.1.2 Electrical Circuit Elements for Common Equivalent Circuit Models

1.4.2 Serial and Parallel Combinations of Circuit Elements

1.4.3 Simple Equivalent Circuit with One Time Constant

1.4.4 Equivalent Circuit Elements and EIS of an Electrochemical Cell

1.4.4.1 Electrolyte Resistance

1.4.4.2 Polarization Resistances

1.4.4.3 Charge Transfer Resistance

1.4.4.4 Warburg Impedance

1.4.4.5 Coating Capacitance

1.4.4.6 Interfacial Capacitance

1.4.4.7 Randies Cell

1.4.4.8 Mixed Kinetic and Diffusion Control

1.5 Scope of the Thesis

Chapter 2 Prussian Blue Modified Amperometric Flow-injection-analysis Biosensor: One-Step Immunoassay for α-Fetoprotein

2.1 Experimental

2.1.1 Materials

2.1.2 Apparatus, Screen-printed Electrodes and Flowcell

2.1.3 Deposition of Prussian Blue on the Surface of Electrodes

2.1.4 Fabrication of Immunosensor and Analytical Procedure

2.2 Results and Discussion

2.2.1 Deposition of Prussian Blue on the Surface of Electrodes

2.2.2 Influence of α-Fetoprotein on the Electrochemical Behaviors of Prussian Blue Modified Immunobiosensor

2.2.3 Flow Injection Analysis and Calibration

2.2.4 Real Serum Sample Testing and Stability

2.3 Summary

Chapter 3 Polyaniline Modified Impedimetric Immunosensors for the Probing of α-Fetoprotein

3. 1 Experimental

3. 1. 1 Reagents

3. 1. 2 Instrumentation

3. 1. 3 Preparation of Screen-printed Electrodes, Polyaniline and Antibody Modified Immunosensors

3. 1. 4 Impedance Analysis

3. 2 Results and Discussion

3. 2. 1 Electropolymerization of Polyaniline

3. 2. 2 Incorporation of Antibody

3. 2. 3 Characterization of the Biosensor

3. 2. 4 Impedance Spectroscopy of the Modification of Electrode and the Interaction Between Antibody and Antigen

3. 3 Summary

Chapter 4 Microfabrication Processes of Si Ultra-thin-body (UTB) Surface Sensitive Devices

4. 1 Introduction

4. 1. 1 MEMS, μ-TAS, Lab-on-a-chip and Microfabrication

4. 1. 2 Substrate Materials

4. 1. 3 Silicon-on-insulator Wafer

4. 2 Microfabrication Processes of Si Ultra-Thin-Body Surface Sensitive Devices

4. 2. 1 Design of Si Ultra-Thin-Body Surface Sensitive Devices

4. 2. 2 Microfabrication Processes of Si Ultra-Thin-Body Surface Sensitive Devices

4. 2. 2. 1 Materials

4. 2. 2. 2 Etching of Segregated Well

4. 2. 2. 3 Processes for Ultra-Thin-Body Si Layer

4. 2. 2. 4 Fabrication of High-doped P+ for Leading Electrodes in the Next step

4. 2. 2. 5 AlSi Alloy Formed for Ohmic Contact as Leading Electrodes

4. 2. 2. 6 Sensitive Si Surface Exposed by Etching Processes by Steps

4.3 Wire Bonding and Packaging of Devices

4. 3. 1 Wire Bonding of Devices

4.3.2 Packaging of Devices

4.4 Summary

Chapter 5 Novel Ultra-Thin-Body Si Surface Sensitive Devices for Impedimetric Immunosensors

5. 1 Experimental

5. 1. 1 Fabrication of Si Ultra-Thin-Body Devices and Characterization of them to pH and Ion Concentration

5. 1. 2 Chemical Modification and Biological Immobilization Processes

5. 1. 3 Device Characterization

5. 2 Results and Discussion

5. 2. 1 The Sensitivity of Si Ultra-Thin-Body Surface Sensitive Devices to pH and Ion Concentration of Solution

5. 2. 2 The Si Ultra-Thin-Body Surface Sensitive Devices Used to Develop Impedance Immunosensors for AFP

5. 3 Summary

Chapter 6 Conclusions

References

Publications

Acknowledgements

发布时间: 2005-10-11

参考文献

  • [1].新型表面等离子体共振生物传感器的研发及其在免疫检测中的应用研究[D]. 吴琼.吉林大学2018
  • [2].基于免疫磁分离及酶促反应的致病菌检测用生物传感器研究[D]. 陈奇.中国农业大学2018
  • [3].农田土壤和灌溉水中重金属检测关键技术研究[D]. 王辉.中国农业大学2018
  • [4].巨磁阻(GMR)生物传感器的研究及其在蛋白与汞离子检测方面的应用[D]. 王炜.南京大学2013
  • [5].基于氧化石墨烯的核酸探针的设计及在生物传感中的应用[D]. 何悦.武汉大学2013
  • [6].金属配合物基纳米材料在光/电化学生物传感中的应用研究[D]. 张光耀.南京理工大学2017
  • [7].生物传感器表面功能化的研究[D]. 李继.西南交通大学2015
  • [8].基于支撑双分子层膜的智能生物传感器系统研究[D]. 刘盛平.重庆大学2003
  • [9].使用SPR生物传感器快速检测大肠杆菌的研究[D]. 葛晶.吉林大学2005
  • [10].新型纳米材料及高聚物用于电流型生物传感界面的构建[D]. 刘志敏.湖南大学2005

相关论文

  • [1].纳米颗粒增强的葡萄糖生物传感器[D]. 孟宪伟.四川大学2001
  • [2].基于聚苯胺及其复合材料的生物传感器[D]. 薛怀国.浙江大学2002
  • [3].纳米活性界面构建新方法用于电化学生物传感器设计[D]. 雷存喜.湖南大学2005
  • [4].新型纳米生物传感器及其应用研究[D]. 张芬芬.华东师范大学2005
  • [5].纳米粒子组装电化学生物传感器和电化学发光免疫分析法的研究[D]. 漆红兰.陕西师范大学2005
  • [6].聚苯胺及其衍生物的电化学制备和应用研究[D]. 周海晖.湖南大学2005
  • [7].新型纳米金生物传感器的研制及DNA损伤的初步研究[D]. 刘英菊.湖南大学2005
  • [8].蛋白质多层膜的自组装构筑及在生物传感器中的应用研究[D]. 李扬眉.浙江大学2005
  • [9].纳米磁性功能微球在免疫分析中的应用及生物传感器的研究[D]. 程琼.浙江大学2006
  • [10].基于电化学交流阻抗技术构建DNA生物传感器的研究[D]. 徐颖.华东师范大学2006

标签:;  ;  ;  ;  ;  ;  

检测甲胎蛋白用新型生物传感器的制备和表征
下载Doc文档

猜你喜欢