高文华:QUANTITATIVE WEIGHTED BOUNDS FOR A CLASS OF SINGULAR INTEGRAL OPERATORS论文

高文华:QUANTITATIVE WEIGHTED BOUNDS FOR A CLASS OF SINGULAR INTEGRAL OPERATORS论文

本文主要研究内容

作者高文华,胡国恩(2019)在《QUANTITATIVE WEIGHTED BOUNDS FOR A CLASS OF SINGULAR INTEGRAL OPERATORS》一文中研究指出:In this article, the authors consider the weighted bounds for the singular integral operator defined by ■where ? is homogeneous of degree zero and has vanishing moment of order one, and A is a function on Rnsuch that ?A ∈ BMO(R~n). By sparse domination, the authors obtain some quantitative weighted bounds for TAwhen ? satisfies regularity condition of Lr-Dini type for some r ∈(1, ∞).

Abstract

In this article, the authors consider the weighted bounds for the singular integral operator defined by ■where ? is homogeneous of degree zero and has vanishing moment of order one, and A is a function on Rnsuch that ?A ∈ BMO(R~n). By sparse domination, the authors obtain some quantitative weighted bounds for TAwhen ? satisfies regularity condition of Lr-Dini type for some r ∈(1, ∞).

论文参考文献

  • [1].Remarks on the lower bounds for sums of the BDH type[J]. 刘弘泉.  Journal of Harbin Institute of Technology.2006(03)
  • [2].Newlower bounds of classical Ramsey numbersR(4 ,12) ,R(5,11)andR(5,12)[J].   Chinese Science Bulletin.1998(06)
  • [3].New lower bounds of classical Ramsey numbers R(6,12), R(6,14) and R(6,15)[J]. LUO Haipeng 1, SU Wenlong 2 and LI Qiao 3 1. Guangxi Academy of Sciences, Nanning 530031, China; 2. Wuzhou First Middle School, Wuzhou 543002, China; 3. Shanghai Jiaotong University, Shanghai 200030, China.  Chinese Science Bulletin.1998(10)
  • [4].Lower bounds for multicolor classical Ramsey numbers R■[J]. 苏文龙,罗海鹏,李乔.  Science in China,Ser.A.1999(10)
  • [5].THEOREMS ON THE LIMIT ANALYSIS OF FINITE DEFORMATION[J]. 薛大为.  Applied Mathematics and Mechanics(English Edition).1988(03)
  • [6].LOWER BOUNDS FOR WEAK BYZANTINE AGREEMENT[J]. 堵丁柱.  Acta Mathematicae Applicatae Sinica(English Series).1989(04)
  • [7].BOUNDS OF THE LONGEST DIRECTED CYCLE LENGTH FOR MINIMAL STRONG DIGRAPHS[J]. Chen Zibo Zhang Fuji.  新疆大学学报(自然科学版).1989(02)
  • [8].LOWER BOUNDS FOR ALL EIGENVALUES OF THE NEUTRON TRANSPORT EQUATION[J]. 林群.  Science in China,Ser.A.1964(12)
  • [9].On the Optimality of Kounias-Sotirakglou Bounds[J]. 李寿德,田增瑞,顾孟迪.  Journal of Donghua University.2007(01)
  • [10].Error bounds for set inclusions[J]. 郑喜印.  Science in China,Ser.A.2003(06)
  • 论文详细介绍

    论文作者分别是来自Acta Mathematica Scientia的高文华,胡国恩,发表于刊物Acta Mathematica Scientia2019年04期论文,是一篇关于,Acta Mathematica Scientia2019年04期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Acta Mathematica Scientia2019年04期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  

    高文华:QUANTITATIVE WEIGHTED BOUNDS FOR A CLASS OF SINGULAR INTEGRAL OPERATORS论文
    下载Doc文档

    猜你喜欢