本文主要研究内容
作者(2019)在《Numerical Simulation of Mechanical Characteristics of a Metal Net for Deep-Sea Aquaculture》一文中研究指出:The investigation on hydrodynamic characteristics of a cage is important for its application in the deep-sea aquaculture in our country. With finite element method, the beam element is used to simulate a three-dimensional metal chain net, and the connector element is introduced as the interaction between metal net lines. A mechanical model for the metal net is constructed to simulate the hydrodynamic characteristics of a metal net subjected to fluid current forces. The static simulation results show that the relative errors of the displacements are 2.13%, 4.19%, 6.64%, and 11.35% compared with static concentrated load tests under concentrated forces of 20, 40, 60, and 80 N, respectively. Both the transient hydrodynamic deformations and drag forces of the netting structures under different current velocities are obtained by solving the hydrodynamic equation of the netting structure. The average relative error of the current forces obtained by numerical simulations shows an 8.13% deviation from the drag tests of the metal nets in the tank under five current velocities. The effectiveness and precision of the simulation approach are verified by static and dynamic tests. The proposed simulation approach will provide a good foundation for the further investigation of the hydrodynamic characteristics of deep-sea aquaculture metal cages and the parameter design for the safety of such cage systems.
Abstract
The investigation on hydrodynamic characteristics of a cage is important for its application in the deep-sea aquaculture in our country. With finite element method, the beam element is used to simulate a three-dimensional metal chain net, and the connector element is introduced as the interaction between metal net lines. A mechanical model for the metal net is constructed to simulate the hydrodynamic characteristics of a metal net subjected to fluid current forces. The static simulation results show that the relative errors of the displacements are 2.13%, 4.19%, 6.64%, and 11.35% compared with static concentrated load tests under concentrated forces of 20, 40, 60, and 80 N, respectively. Both the transient hydrodynamic deformations and drag forces of the netting structures under different current velocities are obtained by solving the hydrodynamic equation of the netting structure. The average relative error of the current forces obtained by numerical simulations shows an 8.13% deviation from the drag tests of the metal nets in the tank under five current velocities. The effectiveness and precision of the simulation approach are verified by static and dynamic tests. The proposed simulation approach will provide a good foundation for the further investigation of the hydrodynamic characteristics of deep-sea aquaculture metal cages and the parameter design for the safety of such cage systems.
论文参考文献
论文详细介绍
论文作者分别是来自Journal of Ocean University of China的,发表于刊物Journal of Ocean University of China2019年06期论文,是一篇关于,Journal of Ocean University of China2019年06期论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自Journal of Ocean University of China2019年06期论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。