基于微米和纳米颗粒的新型磁分离方法

基于微米和纳米颗粒的新型磁分离方法

论文摘要

大多数情况下,由于分析手段、分析对象及分析仪器等的限制,很难实现直接对原始溶液中待测物的检测与分析,对待测物的预富集和浓缩分离常常成为分析工作中的一个重要环节。因此,对现有分离富集技术的改善以及发展新的分离技术对化学和生物分析的研究与应用都具有非常重要的意义。伴随着二十世纪九十年代纳米技术的发展,基于微颗粒的样品分离富集新方法相继产生。人们通过使用不同内核材料,设计合成了具有不同性质和功能的核壳纳米颗粒和微米颗粒。这类颗粒在分析和生物医学领域具有非常重要的作用。磁性核壳纳米和微米颗粒依据其在磁场中的磁感应特性完成目标的分离与富集,是当前分析与生物医学领域中一种重要的纳米技术。 本论文基于核壳型磁性纳米和微米颗粒建立和发展了一系列分离富集样品的新技术。这些技术构成了本论文的两大部分。第一部分主要研究以二氧化硅和金为外壳材料的两种磁性纳米颗粒的合成,及其在寡聚核苷酸分离中的应用。第二部分主要研究磁性微球在铜和铍两种金属离子分离中的应用。第一部分包括第二、第三、第四章,第二部分包括第五、第六、第七章。 第一章:是本论文的导言,主要综述纳米技术及其在分析科学和相关技术中的应用和磁性材料的特性及其在纳米技术特别是在分析领域中的用途,同时对全文各章节内容作了简要介绍。 第二章:对基于功能化纳米颗粒的生物纳米技术进行综述。介绍溶胶凝胶和反相微乳液方法制备纳米颗粒,重点对溶胶凝胶中二氧化硅网状结构的形成进行讨论,并

论文目录

  • Abstract
  • Chinese Abstract(摘要)
  • List of figures
  • List of tables
  • List of Abbreviations
  • Chapter 1 Introduction
  • 1.1 Nanotechnology and analytical sciences
  • 1.2 Nanotechnology, magnetisms, and magnetic materials
  • 1.3 Overview of dissertation
  • 1.4 Summary
  • Chapter 2 Nanobiotechnology and silicate nanoparticles
  • 2. 1 Introduction
  • 2.2 Silicate nanoparticles preparation methods
  • 2.2.1 Bulk method
  • 2.2.2 Microemulsion method
  • 2.3 Sol-gel chemistry
  • 2.3.1 Mechanisms of sol-gel reactions
  • 2.3.2 Base-catalyzed hydrolysis reactions
  • 2.3.3 Acid-catalyzed hydrolysis reactions
  • 2.3.4 Tin-catalyzed sol-gel reactions
  • 2.3.5 Condensation reactions
  • 2.4 Use of silicate nanoparticles in biotechnology
  • 2.4.1 Quantum dots and silica coated quantum dots for recognition methods
  • 2.4.2 Magnetic and silicate nanoparticles as enzyme carrier
  • 2.4.3 Silicate nanoparticles as nanosensor
  • 2.4.4 Dye-doped silicate nanoparticles as recognition tools
  • 2.4.5 Magnetic silicate nanoparticles as separation device
  • 2.4.6 Magnetic silicate nanoparticles as medicine carrier
  • 2.4.7 Silicate nanoparticles as gene carriers
  • 2.5 Biological separation based on antibody antigen interaction using nanoparticles
  • 2.6 Surface modification and bioconjugation of silicate nanoparticles
  • 2.6.1 Streptavidin, Avidin and Biotin
  • 2.6.2 Selection of Coupling Reagents for Avidin/Streptavidin Conjugates
  • 2.6.3 Immobilization of biomolecules on the surface of silicate nanoparticles according to existing functional groups chemistry
  • 2.6.3.1 Amino group chemistry
  • 2.6.3.2 Disulfide-coupling chemistry
  • 2.6.3.3 Carboxyl group chemistry
  • 2.6.3.4 Hydroxyl group Chemistry
  • 2.6.3.5 Electrostatic interaction of avidin and silicate nanoparticles
  • 2.7 Summary
  • 3O4@Au) nanoparticles and application of them in separation of ssDNA'>Chapter3 Synthesis and characterization of magnetite-gold (Fe3O4@Au) nanoparticles and application of them in separation of ssDNA
  • 3.1 Introduction
  • 3.2 Experimental details
  • 3.2.1 Reagents and materials
  • 3.2.2 Instruments
  • 3.2.3 Preparation of magnetic-gold coated nanoparticles
  • 3.2.4 Preparation capture ssDNA-magnetic-gold nanoparticles bioconjugate for proposed separation
  • 3.2.4.1 Formation of the magnetic-gold nanoparticles bioconjugate
  • 3.2.4.2 Principle and choose of target ssDNA for separation
  • 3.3 Results
  • 3O4@Au)'>3.3.1 Characterization of synthesized magnetic-gold nanoparticles(Fe3O4@Au)
  • 3.3.1.1 Transmission Electron Microscope(TEM), size and zeta potential
  • 3.3.1.2 Structure of magnetic-gold nanoparticles(XRD)
  • 3.3.1.3 Optical Properties(UV-Visible spectrum)
  • 3.3.2 Separation principle and preparation of designed probes
  • 3.3.2.1 Separation principle
  • 3.3.2.2 Preparation of the magnetic-gold DNA bioconjugation
  • 3.3.3 Separation of target and mismatches ssDNA using prepared probes
  • 3.3.3.1 Separation efficiency and extraction ability based on magnetic-gold DNA bioconjugate
  • 3.3.3.2 Selectivity of the separation method based magnetic-gold probe
  • 3.3.3.3 Reuse of the magnetic-gold probes for ssDNA separation
  • 3.3.3.4 Investigation of interfering different molar ratios of 1-mimatch with complementary target ssDNA
  • 3.4 Novel properties of magnetic-gold nanoparticles as a fast recognition device of target and mismatches ssDNA based on the UV-Visible spectroscopy
  • 3.5 Summary
  • Chapter4 An efficient method for Recovery of target ssDNA based on Amino-modified silica coated magnetic nanoparticles (ASMNPs)
  • 4.1 Introduction
  • 4.2 Reagents and instruments
  • 4.2.1 Chemicals and materials
  • 4.2.2 Instruments
  • 4.3 Experimental details
  • 4.3.1 Preparation of amino-modified silica coated magnetic nanoparticles
  • 4.3.2 Characterization of amino-modified silica coated magnetic nanoparticles
  • 4.3.3 Bio-modification of the amino-modified silica coated magnetic nanoparticles
  • 4.3.4 Recovery of the target ssDNA(Ⅰ)
  • 4.3.5 Confirmation of the recovery
  • 4.4 Results
  • 4.4.1 Characterization of amino-modified silica coated magnetic nanoparticles
  • 4.4.2 Bio-modification of the amino-modified silica coated magnetic nanoparticles
  • 4.4.3 Recovery of target ssDNA by using of amino-modified silica coated magnetic nanoparticles
  • 4.4.4 Application of this method
  • 4.5 Summary
  • Chapter5 Magnetically Assisted Chemical Separation, principles, methods and applications
  • 5.1 Introduction
  • 5.2 Principles of MACS
  • 5.2.1 Magnetic particles for MACS usage
  • 5.2.2 Interaction of metal ions with particles
  • 5.2.3 Magnetic flocculation
  • 5.2.4 Synergistic effect in magnetic separation
  • 5.3 High gradient magnetic separation
  • 5.3.1 Structure of High Gradient Magnetic Separation (HGMS) Unit
  • 5.3.2 Separation of materials in HGMS unit
  • 5.3.3 Magnetic separators for HGMS
  • 5.3.4 Application of HGMS
  • 5.4 Advantages of MACS
  • 5.5 Applications of MACS
  • 5.6 Summary
  • Chapter6 Spectrophotometeric Determination of Ultra-trace Beryllium after Separation and Preconcentration Using Quinalizarine Modified Magnetic Microparticles
  • 6.1 Introduction
  • 6.2 Experimental
  • 6.2.1 Chemicals
  • 6.2.2 Apparatus
  • 6.2.3. Procedure
  • 6.3 Results and discussion
  • 6.3.1 Photometric determination applicability and precision
  • 6.3.2 Modification effect on extraction efficiency
  • 6.3.3 Effect of microparticles amount
  • 6.3.4 Effect of pH
  • 6.3.5 Equilibrium time
  • 6.3.6 Effect of ionic strength
  • 6.3.7 Maximum capacity of microparticles
  • 6.3.8 Stripping of modified microparticles in experiment conditions
  • 6.3.9 Stability of modified microparticles in experiment conditions
  • 6.3.10 Selectivity
  • 6.3.11 Real sample analysis and analytical performance
  • 6.3.12 Certified reference material analysis
  • 6.4 Summary
  • Chapter7 Novel separation and preconcentration of trace amounts of copper (Ⅱ) in water samples based on neocuproine modified magnetic microparticles
  • 7.1 Introduction
  • 7.2 Experimental
  • 7.2.1 Chemicals
  • 7.2.2 Apparatus
  • 7.2.3 Procedure
  • 7.3 Results and discussion
  • 7.3.1 Effect of amount of extractant
  • 7.3.2 Effect of microparticles amount
  • 7.3.3 Effect of amount of reducing agent
  • 7.3.4 Effect of pH
  • 7.3.5 Equilibrium time
  • 7.3.6 Effect of ionic strength
  • 7.3.7 Maximum capacity of microparticles and partition coefficient
  • 7.3.8 Stripping and stability of modified microparticles in experiment conditions
  • 7.3.9 Selectivity
  • 7.3.10 Real sample analysis and analytical performance
  • 7.3.11. Certified reference material analysis
  • 7.4. Summary
  • Conclusion and Suggestion for future works
  • References
  • Publication from this thesis
  • Acknowledgements
  • 相关论文文献

    • [1].中科院长春应化所:发现多功能诊疗纳米颗粒[J]. 中国粉体工业 2018(06)
    • [2].纳米,最熟悉的“陌生人”[J]. 中国粉体工业 2017(05)
    • [3].纳米线形锂离子电池正极材料的研究进展[J]. 现代化工 2019(12)
    • [4].纳米颗粒药物研发态势报告[J]. 高科技与产业化 2019(11)
    • [5].Staphylococcus saprophyticus JJ-1协同所合成的钯纳米颗粒还原邻氯硝基苯[J]. 云南大学学报(自然科学版) 2020(01)
    • [6].氟化锶纳米板的高压相变行为研究[J]. 吉林师范大学学报(自然科学版) 2020(01)
    • [7].微(纳米)塑料对淡水生物的毒性效应[J]. 吉林师范大学学报(自然科学版) 2020(01)
    • [8].纳米绿色喷墨版的印刷适性[J]. 印刷工业 2019(06)
    • [9].纳米凝胶复合物[J]. 乙醛醋酸化工 2019(12)
    • [10].十氢十硼酸双四乙基铵/纳米铝复合物的制备及其性能[J]. 科学技术与工程 2019(36)
    • [11].细胞膜涂层的仿生纳米颗粒在癌症治疗中的研究进展[J]. 沈阳药科大学学报 2020(01)
    • [12].纳米酶的发展态势与优先领域分析[J]. 中国科学:化学 2019(12)
    • [13].稀土纳米晶用于近红外区活体成像和传感研究进展[J]. 化学学报 2019(12)
    • [14].纳米细菌在骨关节疾病中的研究进展[J]. 吉林医学 2020(01)
    • [15].纳米酶和铁蛋白新特性的发现和应用[J]. 自然杂志 2020(01)
    • [16].纳米酶:疾病治疗新选择[J]. 中国科学:生命科学 2020(03)
    • [17].氧化石墨烯纳米剪裁方法[J]. 发光学报 2020(03)
    • [18].薄层二维纳米颗粒增效泡沫制备及机理分析[J]. 中国科技论文 2019(12)
    • [19].纳米TiO_2基催化剂在环保功能路面应用的研究进展[J]. 中国材料进展 2020(01)
    • [20].铁蛋白纳米笼的研究进展[J]. 中国新药杂志 2020(02)
    • [21].不锈钢表面双重纳米结构的构建及疏水性能研究[J]. 生物化工 2020(01)
    • [22].基于溶解度法的纳米镉、铅、银硫化物的热力学性质研究[J]. 济南大学学报(自然科学版) 2020(02)
    • [23].农药领域中新兴技术——纳米农药及制剂[J]. 农药市场信息 2020(03)
    • [24].纳米TiO_2光催化涂料的研究进展[J]. 山东化工 2020(01)
    • [25].纳米颗粒对含石蜡玻璃窗光热特性影响[J]. 当代化工 2020(01)
    • [26].交流电热流对导电岛纳米电极介电组装的影响[J]. 西安交通大学学报 2020(02)
    • [27].我国纳米科技产业发展现状研究——基于技术维度视角[J]. 产业与科技论坛 2020(01)
    • [28].Al_2O_3@Y_3Al_5O_(12)纳米短纤维对铝合金基复合材料的增强作用[J]. 复合材料学报 2020(02)
    • [29].表面纳米轴向光子的最新进展[J]. 光学与光电技术 2020(01)
    • [30].中国科学院大学地球与行星科学学院教授琚宜文:践履笃实纳米地质情 创新不息科技强国梦[J]. 中国高新科技 2020(02)

    标签:;  ;  ;  ;  ;  ;  ;  

    基于微米和纳米颗粒的新型磁分离方法
    下载Doc文档

    猜你喜欢