基于谱分析与统计机器学习的DDoS攻击检测技术研究

基于谱分析与统计机器学习的DDoS攻击检测技术研究

论文摘要

结合国家863项目“高可信网络业务管控系统”和“面向三网融合的统一安全管控网络”的研究需求,按照“分布式检测、层级化拦阻和集中态势感知”的总体思路,本文对DDoS攻击检测技术展开专门研究,从宏观攻击流感知与微观检测方法两个角度,提出了基于IP流序列谱分析的泛洪攻击与低速率拒绝服务(Low-rate Denial of Service, LDoS)攻击感知方法,在感知到攻击的基础上,将DDoS攻击检测转化为机器学习的二分类问题,利用隐马尔科夫模型、孪生支持向量机和条件随机场三种机器学习模型,实现概率点检测、分类超平面检测以及融合多特征处理优势的条件随机场检测方法。针对宏观感知问题,提出了基于快速分数阶Fourier变换估计Hurst旨数的泛洪DDoS攻击感知方法,利用DDoS攻击对网络流量自相似性的影响,通过监测Hurst指数变化阈值判断是否存在DDoS攻击,相比于小波分析等方法,该方法计算复杂度低,Hurst旨数估计精度高;对于隐蔽性较强的低速率拒绝服务LDoS攻击,提出了基于巴特利特功率谱估计的感知方法,相比于矩形窗和三角窗方法,巴特利特功率谱估计一致性好,对低速率拒绝服务LDoS攻击检测率高。针对微观的具体攻击特征检测问题,提出了基于隐马尔科夫模型、基于孪生支持向量机和基于条件随机场等三种统计机器学习方法的攻击检测策略。首先,从概率点判别角度,提出了一种基于多特征并行隐马尔科夫模型(Multi-Feature Parallel Hidden Markov Model, MFP-HMM)的DDoS攻击检测方法。该方法利用HMM隐状态序列与特征观测序列的对应关系,将攻击引起的多维特征异常变化转化为离散型随机变量,通过概率计算来刻画当前滑动窗口序列与正常行为轮廓的偏离程度。MFP-HMM模型架构采用多维特征并行处理模式,有利于扩展新的特征模块。特征序列通过滑动窗口后形成观测序列送入HMM,可通过硬件实现多级流水加速,为可重构设计与分布式部署提供条件。实验结果表明,基于MFP-HMM的方法优于标准HMM等机器学习方法,检测准确率高,虚警率低。其次,从分类超平面判别角度,提出了基于最小二乘孪生支持向量机(Least Square Twin Support Vector Machine, LSTSVM)的DDoS攻击分类超平面检测方法,该方法借助最优化方法来解决机器学习问题,利用支持向量机模型较好的非线性处理能力与泛化能力,采用IP包五元组熵、IP标识、TCP头标志和包速率等作为LSTSVM模型的多维检测特征向量,以体现DDoS攻击存在的流分布特性。基于DARPA2000数据集和TFN2K攻击采集数据集下的实验表明,该方法优于标准支持向量机(Support Vector Machine, SVM)等机器学习方法,对于正常突发流量与DDoS攻击流量检测准确率较高、虚警率较低。最后,提出了一种融合多种判别规则的条件随机场DDoS攻击检测方法。该方法不要求各个特征量必须满足独立同分布的假设条件,在充分利用条件随机场综合处理多特征优势的基础上,将基于特征匹配与异常检测的方法有效地统一起来,实现高检测率与低误报率。DARPA2000数据集实验表明,基于条件随机场的方法优于传统SVM等方法,准确率高于99.5%,虚警率FPR低于0.6%,并且抗背景噪声能力强,鲁棒性好。

论文目录

  • 摘要
  • ABSTRACT
  • 目录
  • 图录
  • 表录
  • 第一章 绪论
  • 1.1 研究背景与意义
  • 1.2 DDoS攻击检测方法概述
  • 1.3 问题提出
  • 1.4 论文的主要贡献
  • 1.5 论文结构
  • 第二章 基于IP流序列谱分析的攻击感知方法
  • 2.1 引言
  • 2.2 问题分析
  • 2.3 泛洪攻击的流量自相似性分析
  • 2.4 低速率攻击检测的功率谱估计方法
  • 2.5 实验结果与分析
  • 2.6 小结
  • 第三章 多特征并行隐马尔科夫模型检测方法
  • 3.1 引言
  • 3.2 问题分析
  • 3.3 MFP-HMM模型的建立
  • 3.4 基于MFP-HMM模型的检测方法
  • 3.5 实验结果与分析
  • 3.6 小结
  • 第四章 最小二乘孪生支持向量机检测方法
  • 4.1 引言
  • 4.2 问题分析
  • 4.3 LSTSVM检测模型的建立
  • 4.4 基于LSTSVM模型的检测方法
  • 4.5 实验结果与分析
  • 4.6 小结
  • 第五章 融合规则集的条件随机场检测方法
  • 5.1 引言
  • 5.2 问题分析
  • 5.3 CRF模型的建立
  • 5.4 基于CRF模型的检测方法
  • 5.5 实验结果与分析
  • 5.6 三种机器学习模型的比较
  • 5.7 小结
  • 第六章 结束语
  • 6.1 本文的研究成果
  • 6.2 本文的主要创新点
  • 6.3 需要进一步研究的问题
  • 致谢
  • 参考文献
  • 作者简历 攻读博士学位期间完成的主要工作
  • 相关论文文献

    • [1].基于自适应阈值的DDoS攻击态势预警模型[J]. 浙江大学学报(工学版) 2020(04)
    • [2].2020第1季度DDoS攻击趋势[J]. 计算机与网络 2020(10)
    • [3].新闻门户网站DDoS防范研究[J]. 信息与电脑(理论版) 2020(16)
    • [4].基于智能蜂群算法的DDoS攻击检测系统[J]. 计算机科学 2018(12)
    • [5].反射放大型DDOS攻击资源分析及其治理建议[J]. 江西通信科技 2019(02)
    • [6].2017年上半年DDoS攻击疯狂增长[J]. 计算机与网络 2017(23)
    • [7].预防遭受DDoS威胁[J]. 软件和集成电路 2018(01)
    • [8].京东云重磅发布DDoS高防服务[J]. 计算机与网络 2018(03)
    • [9].检测和防御“云”的DDoS攻击[J]. 网络安全和信息化 2017(01)
    • [10].6种绝佳防御DDoS攻击方法[J]. 计算机与网络 2018(10)
    • [11].DDoS攻击后果日益严重[J]. 网络安全和信息化 2018(05)
    • [12].基于灰色模糊层次模型的DDoS攻击态势评估[J]. 舰船电子工程 2018(07)
    • [13].2018上半年互联网DDoS攻击趋势分析[J]. 计算机与网络 2018(13)
    • [14].DDoS防御的11种方法详解[J]. 电脑知识与技术(经验技巧) 2018(08)
    • [15].DDoS攻击原理及防御方法研究[J]. 科技经济导刊 2018(30)
    • [16].大流量DDoS攻击防护方案探讨[J]. 邮电设计技术 2016(12)
    • [17].丢掉DDoS的八个幻想[J]. 软件和集成电路 2017(01)
    • [18].DDoS攻击检测模型的设计[J]. 武汉工程大学学报 2017(01)
    • [19].盘点2016年最严重的DDoS攻击事件[J]. 计算机与网络 2016(24)
    • [20].基于攻击检测和攻击过滤的政务网内DDOS攻击的防护[J]. 数字通信世界 2017(05)
    • [21].企业防御DDoS攻击需要多管齐下[J]. 计算机与网络 2017(14)
    • [22].云计算环境下DDoS研究[J]. 信息与电脑(理论版) 2017(14)
    • [23].新型“脉冲波”DDoS攻击来袭[J]. 计算机与网络 2017(19)
    • [24].DDoS Attack in Software Defined Networks: A Survey[J]. ZTE Communications 2017(03)
    • [25].DDoS攻击防御技术发展综述[J]. 网络与信息安全学报 2017(10)
    • [26].DDoS放大攻击原理及防护方法[J]. 电信网技术 2017(10)
    • [27].如何在企业中应对DDoS攻击[J]. 电信网技术 2015(12)
    • [28].《2015全年DDoS威胁报告》报告[J]. 计算机与网络 2016(09)
    • [29].DDOS攻击的分析与研究[J]. 科技创新与应用 2014(34)
    • [30].浅析网络DDoS攻击与治理[J]. 通讯世界 2015(01)

    标签:;  ;  ;  ;  ;  ;  ;  

    基于谱分析与统计机器学习的DDoS攻击检测技术研究
    下载Doc文档

    猜你喜欢