基于机器学习方法的视频标注研究

基于机器学习方法的视频标注研究

论文摘要

随着存储设备、计算机网络和压缩技术的发展,产生了大量的视频数据,如何有效地处理和访问这些数据,成为一个迫切需要解决的问题。视频语义标注可以根据视频所体现的内容按概念对其赋予标号,在此基础上可以实现高效的视频数据处理(如索引、检索和缩略等)。完全使用人工来实现视频标注任务,无疑可以获得相当精确的结果。然而手工标注是一项费时费力的工作,无法在大规模的数据集和概念集上应用。因此,使用机器学习方法来实现这一任务成了必然的选择。本文主要针对基于机器学习的视频标注展开研究,提出了一系列方法,以期能够对非特定领域数据集和概念集,自动地或在尽量少的人工参与情况下,取得与完全手工标注尽可能接近的结果,达到可实际应用的目的。本论文的主要研究工作如下:1.在传统的核密度估计方法中引入未标注数据的信息,提出了半监督核密度估计以及半监督自适应核密度估计,以解决视频标注中训练数据不足的问题。传统的核概率密度估计方法形式简单,便于使用,但是其性能非常依赖于训练样本的数目,当训练样本很少时,会导致其性能降低。而在视频标注中,训练数据不足是经常遇到的问题。通过引入未标注数据,可解决这个问题,改善核概率密度估计方法的性能。另外,木文还分析了所提算法和基于图的半监督学习之间的关系。2.我们提出了一种统一自动视频标注方法。除了训练数据不足的问题.视频标注中还存在着一系列其它的问题,包括维数灾难、距离度量的选择和时间连续性的挖掘。本文通过分析,指出这些问题都可以归结为样本的相似性度量问题或者半监督学习问题,因此这四个问题的应对可以描述为一个多图半监督学习的问题。本文提出一种名为最优多图半监督学习方法,将多张图集成到一个正则化框架中,并且可同时优化这些图的加权系数。3.研究基于多概念多模态主动学习的半自动视频标注。主动学习是一种人机结合的学习途径,其通过学习和样本选择的迭代进行,可选出比随机挑选方法更为有效的训练集。因此使用主动学习来进行半自动视频标注,是解决训练数据不足的一种新途径。然而已有的主动学习算法大多没有考虑视频标注中的多概念和多模态的特点,本文针对这一问题提出了多概念多模态主动学习算法,可同时考虑这两个问题。在主动学习的每一轮中,具有最大期望性能增益的概念被选择,并且选取一批合适的样本来对该概念进行标注。在选取样本的过程中,从每个模态选取的样本数被限定为与该模态的期望性能增益成正比。之后,对每个模态使用基于图的半监督学习算法来标注该概念。通过这种途径,可充分挖掘人工标注的劳动,在尽可能少人工参与的情况下获得更好的标注结果。4.研究对视频镜头大小的标注。目前视频标注中的待标注概念大多集中于场景、事件和物体等,而忽略了镜头大小这种特殊的概念。与一般的概念不同,视频镜头大小概念有其自身的特点,例如其互斥而又具有一定的顺序关系。此外,对于视频镜头大小的标注仅采用常用的底层特征很难取得好的效果,而这些概念与一些中层特征,例如视频帧中物体的数目以及大小等,有较强的联系。因此,本文介绍了一种基于底层特征和中层特征互训练的方法来标注视频镜头大小,此外,针对三种镜头大小概念之间的关系,引入代价函数并实现代价最小的判决。虽然本文所提的算法都是面向视频标注,但是很多方法实质上也能直接应用于其它领域(如半监督核密度估计和多图半监督学习等),在文中也会有具体介绍。视频标注问题,涉及到机器学习、计算机视觉以及认知科学等多个领域,希望本文的研究工作,也能为相关领域提供一些新的思路与方法。

论文目录

  • 摘要
  • ABSTRACT
  • 目录
  • 插图目录
  • 表格目录
  • 第一章 绪论
  • 1.1 课题背景与研究意义
  • 1.2 基于机器学习方法的视频标注原理
  • 1.3 图内外研究和发展现状
  • 1.4 本论文研究的主要内容和结构安排
  • 第二章 视频结构分析、特征提取与常用学习算法介绍
  • 2.1 视频结构分析
  • 2.1.1 镜头检测
  • 2.1.2 子镜头切分
  • 2.1.3 关键帧抽取
  • 2.2 特征提取
  • 2.2.1 颜色直方图
  • 2.2.2 颜色矩
  • 2.2.3 颜色相关图
  • 2.2.4 边缘分布直方图
  • 2.2.5 小波纹理特征
  • 2.2.6 共生纹理
  • 2.2.7 Tamura纹理
  • 2.2.8 自回归纹理
  • 2.3 常用学习算法介绍
  • 2.3.1 核密度估计(KDE)
  • 2.3.2 高斯混合模型(GMM)
  • 2.3.3 支持向量机(SVM)
  • 2.3.4 各算法的优缺点
  • 2.4 视频标注的性能评价
  • 2.5 数据集与概念集介绍
  • 第三章 基于半监督核密度估计的自动视频标注
  • 3.1 半监督学习
  • 3.2 半监督核密度估计(SSKDE)
  • 3.2.1 扩展核密度估计
  • 3.2.2 SSKDE的推导
  • 3.3 相关讨论
  • 3.3.1 SSKDE的求解
  • 3.3.2 与基于图的半监督学习的关系
  • 3.4 半监督自适心核密度估计(SSAKDE)
  • 3.5 试验
  • 3.5.1 仿真试验
  • 3.5.2 手写数字和手写字母识别试验
  • 3.5.3 视频标注试验
  • 3.5.4 运算量分析
  • 3.6 对未标注样本作用的分析
  • 3.7 本章小节
  • 第四章 基于多图半监督学习的统一自动视频标注
  • 4.1 视频标注中的问题和相关工作
  • 4.1.1 维数灾难与多模态融合
  • 4.1.2 距离度量的选择
  • 4.1.3 时间连续性的挖掘
  • 4.1.4 讨论
  • 4.2 最优多图半监督学习(OMG-SSL)
  • 4.2.1 基于单图的半监督学习
  • 4.2.2 单图到多图的扩展
  • 4.2.3 OMG-SSL
  • 4.3 基于OMG-SSL的视频标注
  • 4.4 试验验证
  • 4.4.1 人物识别
  • 4.4.2 视频标注
  • 4.5 运算量分析
  • 4.6 本章小节
  • 第五章 基于多概念多模态主动学习的半自动视频标注
  • 5.1 基于主动学习的半自动视频标注
  • 5.2 多概念多模态主动学习
  • 5.3 概念选择
  • 5.4 Manifold-Ranking
  • 5.5 样本选择
  • 5.5.1 Informativeness准则
  • 5.5.2 Density准则
  • 5.5.3 Diversity准则
  • 5.5.4 多模态样本选择
  • 5.6 试验验证
  • 5.6.1 Manifold-Ranking性能度量
  • 5.6.2 样本选择策略的试验验证
  • 5.6.3 概念选择策略的试验验证
  • 5.6.4 运算量分析
  • 5.7 讨论
  • 5.8 本章小节
  • 第六章 基于互训练的视频镜头大小标注
  • 6.1 视频镜头大小标注的意义
  • 6.2 所提视频镜头大小标注方法
  • 6.3 特征提取
  • 6.4 分类算法
  • 6.4.1 基于底层特征与中层特征的互训练
  • 6.4.2 判决准则
  • 6.5 试验验证
  • 6.5.1 关于特征集的试验
  • 6.5.2 关于互训练的试验
  • 6.5.3 关于代价敏感决策的试验
  • 6.6 本章小节
  • 第七章 总结和展望
  • 7.1 本文总结
  • 7.2 研究工作展望
  • 参考文献
  • 攻读学位期间成果及项目情况
  • 致谢
  • 相关论文文献

    • [1].数据标注研究综述[J]. 软件学报 2020(02)
    • [2].群智标注系统中质量管理设计与实现[J]. 舰船电子工程 2020(05)
    • [3].社会化标注系统用户标注动机研究:基于扎根理论的视角[J]. 情报科学 2020(07)
    • [4].语言标注框架评述与对比分析[J]. 网络新媒体技术 2019(03)
    • [5].教育信息资源用户标注模型构建及仿真研究[J]. 现代远距离教育 2017(01)
    • [6].图像标注中的用户标注模式与心理研究[J]. 情报学报 2015(05)
    • [7].医疗语义众包标注平台设计和应用研究[J]. 医学信息学杂志 2020(07)
    • [8].基于众包标注提高教学效果的探索[J]. 科教导刊(上旬刊) 2020(08)
    • [9].面向特定标注数据稀缺领域的命名实体识别[J]. 指挥信息系统与技术 2019(05)
    • [10].基于数据均衡的增进式深度自动图像标注[J]. 软件学报 2017(07)
    • [11].基于超网络的社会化标注行为[J]. 系统工程 2015(03)
    • [12].巧用标注手段,助力阅读理解[J]. 广东教育(高中版) 2019(10)
    • [13].网络环境下大众标注行为动机的调查与分析[J]. 图书情报工作 2013(23)
    • [14].自动图像标注技术综述[J]. 计算机研究与发展 2020(11)
    • [15].来稿中作者署名的标注要求[J]. 西部医学 2010(02)
    • [16].本刊关于标注“通讯作者”的说明[J]. 中国中西医结合影像学杂志 2010(03)
    • [17].科技论文“一文多注(标注)”现象分析[J]. 科学学研究 2009(05)
    • [18].国外社会化标注系统中标注行为研究现状[J]. 情报杂志 2009(11)
    • [19].国外大众标注系统研究进展[J]. 图书馆杂志 2008(11)
    • [20].大众标注研究进展[J]. 图书情报工作 2008(01)
    • [21].汉英篇章结构平行语料库的对齐标注研究[J]. 中文信息学报 2013(06)
    • [22].社会标注系统质量对用户标注意愿的影响机理[J]. 图书馆论坛 2019(06)
    • [23].深度学习图像标注与用户标注比较研究[J]. 数据分析与知识发现 2018(05)
    • [24].用户社会化标注中非理性行为的表现及原因分析[J]. 数字图书馆论坛 2016(12)
    • [25].基于深度学习的自动图像标注研究与实现[J]. 中国高新技术企业 2017(03)
    • [26].汉语二语教学领域词义标注语料库的研究及构建[J]. 中文信息学报 2017(01)
    • [27].汉英篇章结构平行语料库的对齐标注评估[J]. 中文信息学报 2017(03)
    • [28].国内社会标注研究现状及发展趋势[J]. 晋图学刊 2015(06)
    • [29].浅议图书标注发展中的问题解析及对策[J]. 科技创业月刊 2016(17)
    • [30].我院67份滴眼液说明书标注项的调查与分析[J]. 中国药房 2015(13)

    标签:;  ;  ;  ;  ;  ;  ;  ;  

    基于机器学习方法的视频标注研究
    下载Doc文档

    猜你喜欢