论文摘要
非线性常微分方程边值问题的研究是一个具有现实意义和持久生命力的课题.关于二阶线性常微分方程多点边值问题的研究是由Il’in和Moiseev首先开始的.近一段时间以来,在非线性常微分方程多点边值问题解的存在性、多解等研究中,很多文献对非线性函数赋予了各种不同的条件.其中,一维p-Laplacian非线性多点边值问题是当今较为活跃的研究领域之一,它产生于非牛顿流体理论和多孔介质气体的湍流理论,随后在应用数学和应用物理的许多领域有广泛的应用.本文主要利用非线性泛函分析中的拓扑度理论、锥理论和单调迭代等方法研究了几类具一维p-Laplacian算子的非线性常微分方程多点边值问题解的存在性、多解等问题.主要内容如下:第二章研究了非线性项含导数项的p-Laplacian算子多点边值问题其中Φp(s)=|s|p-2s,p>1,Φq=(Φp)-1,1/p+-/q=1,1≤k≤s≤m-2,0<ξ1<ξ2<…<ξm-2<1.利用Avery-Peterson不动点定理,我们得到了存在三个正解的充分条件.第三章利用Krasnosel’skii不动点定理和不动点指数定理,讨论了如下一类具有p-Laplace算子的多点边值问题其中Φp(s)=|s|P-2s,p>1,Φq=(Φp)-1,1/p+1/q=1,1≤k≤m-2,0<ξ1<ξ2<…<ξm-2<1,ai,bi,a,f满足,(H2)f(t,u,v)∈C([0,1]×[0,∞)×R→[0,∞)),a(t)是定义在(0,1)上的非负可测泛函,且在(0,1)上的任意子区间a(t)≠0,另外a(t)满足0<(?)<+∞.我们获得了正解存在性定理,同时利用单调迭代方法不仅得到了正解,而且建立了迭代序列逼近其解.第四章我们讨论了如下一维p-Laplacian算子在共振条件下的多点边值问题其中Φp(s):|s|p-2s,p>1,e(t)∈L1[0,1].αi∈R,ηi∈(0,1),αi>0,(?)=1i=1,2,…,m-2,0<η1<η2<…ηm-2<1,f:[0,1]×R2→R并且满足Caratheodory条件,利用由葛渭高教授推广的Mawhin连续性定理,获得了至少存在一个解的充分条件.
论文目录
相关论文文献
- [1].Gradient Estimates for p-Laplacian Lichnerowicz Equation on Noncompact Metric Measure Space[J]. Chinese Annals of Mathematics,Series B 2020(03)
- [2].Equivalence Relation between Initial Values and Solutions for Evolution p-Laplacian Equation in Unbounded Space[J]. Communications in Mathematical Research 2020(01)
- [3].Ordering Quasi-Tree Graphs by the Second Largest Signless Laplacian Eigenvalues[J]. Journal of Mathematical Research with Applications 2020(05)
- [4].Existence of Solutions to Nonlinear Schr?dinger Equations Involving N-Laplacian and Potentials Vanishing at Infinity[J]. Acta Mathematica Sinica 2020(10)
- [5].含偶圈图的Laplacian谱刻画[J]. 运筹学学报 2018(04)
- [6].四阶p-Laplacian边值问题正解的存在性(英文)[J]. 数学季刊(英文版) 2018(04)
- [7].The Existence of Semiclassical States for Some P-Laplacian Equation with Critical Exponent[J]. Acta Mathematicae Applicatae Sinica 2017(02)
- [8].Soft Decision Based Gaussian-Laplacian Combination Model for Noisy Speech Enhancement[J]. Chinese Journal of Electronics 2018(04)
- [9].具有奇性的Laplacian型方程周期正解的存在性[J]. 韩山师范学院学报 2016(06)
- [10].Blow-up of p-Laplacian evolution equations with variable source power[J]. Science China(Mathematics) 2017(03)
- [11].Solvability for a Coupled System of Fractional p-Laplacian Differential Equations at Resonance[J]. Communications in Mathematical Research 2017(01)
- [12].The Existence of Nodal Solutions for the Half-Quasilinear p-Laplacian Problems[J]. Journal of Mathematical Research with Applications 2017(02)
- [13].Coiflet solution of strongly nonlinear p-Laplacian equations[J]. Applied Mathematics and Mechanics(English Edition) 2017(07)
- [14].Laplacian Energies of Regular Graph Transformations[J]. Journal of Donghua University(English Edition) 2017(03)
- [15].Existence of Solutions to a p-Laplacian Equation with Integral Initial Condition[J]. Communications in Mathematical Research 2017(04)
- [16].The Signless Laplacian Spectral Characterization of Strongly Connected Bicyclic Digraphs[J]. Journal of Mathematical Research with Applications 2016(01)
- [17].Multiplicity for Nonlinear Elliptic Boundary Value Problems of p-Laplacian Type Without Ambrosetti-Rabinowitz Condition[J]. Acta Mathematicae Applicatae Sinica 2015(01)
- [18].Existence of Solutions for a Four-point Boundary Value Problem with a p(t)-Laplacian[J]. Communications in Mathematical Research 2015(01)
- [19].奇异Φ-Laplacian周期边值问题解的存在性[J]. 山东大学学报(理学版) 2015(08)
- [20].单圈图的最小无号Laplacian谱展[J]. 华南师范大学学报(自然科学版) 2013(04)
- [21].循环图的Laplacian谱展[J]. 数学杂志 2013(06)
- [22].The Normalized Laplacian Spectrum of Pentagonal Graphs and Its Applications[J]. Journal of Mathematical Research with Applications 2019(04)
- [23].Evolutionary p(x)-Laplacian Equation with a Convection Term[J]. Acta Mathematicae Applicatae Sinica 2019(03)
- [24].Existence of Nonnegative Solutions for a Class of Systems Involving Fractional(p,q)-Laplacian Operators[J]. Chinese Annals of Mathematics,Series B 2018(02)
- [25].一类p-Laplacian方程单侧全局区间分歧及应用[J]. 数学物理学报 2018(04)
- [26].Energy and Laplacian of fractal interpolation functions[J]. Applied Mathematics:A Journal of Chinese Universities 2017(02)
- [27].图的Normalized Laplacian多项式系数[J]. 集美大学学报(自然科学版) 2016(01)
- [28].一类具有奇性p-Laplacian-Rayleigh方程的周期正解[J]. 韩山师范学院学报 2016(03)
- [29].Homoclinic Solutions for a Prescribed Mean Curvature Lienard p-Laplacian Equation with a Deviating Argument[J]. Journal of Donghua University(English Edition) 2016(03)
- [30].一类奇性的p-Laplacian-Rayleigh方程的周期正解的存在性[J]. 井冈山大学学报(自然科学版) 2016(04)