多铁垒隧道结的自旋输运

多铁垒隧道结的自旋输运

论文摘要

本论文重点研究了多铁垒隧道结中的自旋输运性质,包括自旋过滤效应、隧穿磁电阻效应和隧穿电致电阻效应。我们详细分析了势垒的多铁性,包括铁磁性和铁电性,以及势垒的逆压电性对隧道结自旋输运的作用机制。在此基础上,建立了相应的理论模型,详细研究了势垒的多铁性和逆压电性对隧道结自旋输运性质可能产生的作用和影响,探索了增强机制和相应的调控手段。我们的具体工作主要有以下几方面:1.利用单相多铁垒隧道结提高半导体的自旋注入效率并实现多重调控我们分析了铁磁垒和铁电垒隧道结中产生自旋过滤效应的机制,发现它们分别属于两种不同的类型:势垒高度的自旋相关性和势垒厚度的自旋相关性。由于铁磁-铁电型单相多铁垒同时具有铁磁性和铁电性,因此,如果选用合适的电极与多铁垒相结合,就有可能在一个隧道结中同时实现这两种自旋过滤机制。基于这样的考虑,我们建立了一种新的多铁垒隧道结模型,即DMS-MF-NS模型,其中DMS为稀磁半导体电极,MF为铁磁-铁电型单相多铁垒,NS为非磁半导体电极。该模型的关键是DMS电极与多铁垒的结合,从而实现了在一个隧道结中同时存在两种自旋过滤机制。当这两种机制同时发生作用时,就可以使自旋过滤效应得到增强,从而可以利用这一模型提高对半导体的自旋注入效率。同时,通过外场对多铁垒中磁矩和电极化取向的控制,可以实现注入自旋态的四重控制。2.利用铁磁-铁电型两相复合多铁垒隧道结增强自旋输运效应现有的天然单相多铁材料很难同时具备较强的铁磁性和铁电性,而且,它们的居里温度都较低,室温下多铁性很弱甚至消失,从而使多铁垒隧道结的应用前景受到很大限制。这就促使人们通过其他途径来寻找更强的多铁材料,如通过技术设计将一层铁磁材料和一层铁电材料进行复合,构成铁磁-铁电型两相复合多铁材料。对于这种以铁磁-铁电型复合多铁材料为势垒的多铁垒隧道结中的自旋输运性质,理论的研究还很缺乏。为此,我们建立了一种复合多铁垒隧道结模型,即M1-FE-FM-M2模型,其中FE表示一层铁电垒,FM表示一层铁磁垒,M1和M2分别为两个金属性电极。通过这一模型,我们研究了复合多铁垒隧道结中自旋输运的主要特性。结果表明,由强铁磁层与强铁电层进行复合而构建的多铁性较强的复合多铁垒隧道结中,存在着比单相多铁垒隧道结中强得多的自旋过滤效应、隧穿磁电阻效应和隧穿电致电阻效应,并且在这种隧道结中,对自旋输运效应的调控手段也可以更加多样化。3.外加偏压下势垒的逆压电性对隧道结自旋输运性质的作用与影响研究表明,不仅大部分铁电材料具有逆压电性,而且许多多铁材料也具有明显的逆压电性。因此,在外加偏压的情况下,多铁垒中的逆压电性将不可避免地对隧道结中的电子隧穿行为产生影响。目前,关于铁电垒隧道结中的逆压电性对电子隧穿特性的影响已经有人从理论上进行了较为详细的研究,但对于多铁垒隧道结的相关研究仍是空白。为此,我们分别建立了单相多铁垒隧道结和复合多铁垒隧道结模型,对其中势垒的逆压电性可能对自旋输运产生的作用和影响进行了详细研究和分析。结果表明,势垒的逆压电性将对自旋过滤效应、隧穿磁电阻效应和隧穿电致电阻效应产生明显的增强或削弱作用,具体取决于势垒中的电极化相对于外电场的取向。并且,当势垒的逆压电性很强时,隧穿磁电阻效应和隧穿电致电阻效应均会出现不同于传统隧道结的偏压特性,而这一偏压特性对于自旋电子学器件的设计和应用是十分有利的。

论文目录

  • 中文摘要
  • Abstract
  • 第一章 绪论
  • 1.1 隧穿磁电阻效应
  • 1.2 自旋过滤效应
  • 1.3 隧穿电致电阻效应
  • 1.4 多铁垒隧道结的自旋输运
  • 1.5 我们的工作
  • 参考文献
  • 第二章 单相多铁垒隧道结的自旋输运
  • 2.1 理论模型
  • 2.2 计算方法
  • 2.3 结果与讨论
  • 2.4 小结
  • 参考文献
  • 第三章 复合多铁垒隧道结的自旋输运
  • 3.1 理论模型
  • 3.2 计算方法
  • 3.3 结果与讨论
  • 3.4 小结
  • 参考文献
  • 第四章 多铁垒隧道结中自旋输运的应力效应
  • 第一部分 单相多铁垒隧道结中自旋输运的应力效应
  • 1. 理论模型
  • 2. 计算方法
  • 3. 结果与讨论
  • 4. 小结
  • 参考文献
  • 第二部分 复合多铁垒隧道结中自旋输运的应力效应
  • 1. 理论模型
  • 2. 计算方法
  • 3. 结果与讨论
  • 4. 小结
  • 参考文献
  • 第五章 总结
  • 附录
  • 已发表和待发表论文目录
  • 致谢
  • 详细摘要
  • 相关论文文献

    • [1].自旋太赫兹源:性能、调控及其应用[J]. 物理学报 2020(20)
    • [2].硅基自旋注入研究进展[J]. 半导体技术 2015(09)
    • [3].自旋超导态[J]. 物理 2017(02)
    • [4].全自旋逻辑电路的仿真模型[J]. 微纳电子技术 2017(06)
    • [5].二维过渡金属二硫化物中自旋能谷耦合的谷电子学[J]. 物理 2017(05)
    • [6].两分量玻色-爱因斯坦凝聚系统的自旋压缩[J]. 物理学报 2009(06)
    • [7].基于自旋运动的高速弹头成像方法[J]. 雷达学报 2013(03)
    • [8].任意态量子信息在自旋链上的传输[J]. 量子电子学报 2012(05)
    • [9].基于新型配置方式的自旋弹头变质心控制研究[J]. 航天控制 2011(04)
    • [10].双锚固自旋锚杆抗拔力理论分析与试验研究[J]. 山东煤炭科技 2015(01)
    • [11].从自旋冰到自旋液态的渡越——结构与磁性质的演化[J]. 物理学报 2010(03)
    • [12].自旋催化剂——量子触发化学反应(英文)[J]. 催化学报 2015(10)
    • [13].三个自旋1/2粒子体系的自旋波函数[J]. 公安海警高等专科学校学报 2009(01)
    • [14].自旋 新世纪的十年[J]. 市场周刊(艺术财经) 2012(10)
    • [15].高性能自旋代码设计[J]. 计算机研究与发展 2012(S2)
    • [16].广义类W态的自旋压缩[J]. 江西科学 2012(06)
    • [17].变质心自旋弹头的建模及自适应滑模控制[J]. 科技导报 2009(05)
    • [18].变质心自旋弹头的姿态运动建模与仿真分析[J]. 飞行力学 2009(04)
    • [19].自旋摩阻动力学模型与实验研究[J]. 北京大学学报(自然科学版) 2018(05)
    • [20].宇宙的自旋生[J]. 广西民族大学学报(哲学社会科学版) 2017(01)
    • [21].自旋液体隐藏秩序被发现[J]. 稀土信息 2016(06)
    • [22].自主捕获中自旋目标运动特性分析与地面模拟方法[J]. 机器人 2013(01)
    • [23].利用信息流方法优化多激发自旋链中的量子态传输[J]. 物理学报 2015(16)
    • [24].软岩隧道自旋锚管抗拔力的计算理论[J]. 中国安全生产科学技术 2010(02)
    • [25].自旋多重度对铬分子结构的影响(英文)[J]. 新疆师范大学学报(自然科学版) 2010(02)
    • [26].自旋锚管的抗弯性能分析研究[J]. 陕西煤炭 2010(04)
    • [27].高速自旋飞行器惯性制导系统技术研究[J]. 测控技术 2010(10)
    • [28].隧道结中的自旋过滤效应[J]. 泰州职业技术学院学报 2009(03)
    • [29].有限温度下受控自旋链的纠缠动力学研究[J]. 常熟理工学院学报 2009(10)
    • [30].随时间变化磁场中自旋演化的求解新方法[J]. 量子光学学报 2016(04)

    标签:;  ;  ;  ;  ;  ;  

    多铁垒隧道结的自旋输运
    下载Doc文档

    猜你喜欢