耕作与水蚀引起坡耕地土壤有机碳空间变化

耕作与水蚀引起坡耕地土壤有机碳空间变化

论文摘要

十壤在全球碳循环中起着重要作用,并且对碳封存或释放到大气中具有巨大潜在力。由十壤侵蚀引起的土壤有机碳(SOC)再分布过程依然是争议的话题。在全球上,土壤侵蚀导致坡耕地大量有机碳发生横向再分布。在地形系列土壤或田块尺度中,人们普遍认为土壤流失导致SOC含量降低。然而,水库和其他沉积点中的沉积物种富含大量SOC。净源或大气中CO2沉降的结果尚不清楚。全球估计范围从每年大约1Pg C来源到沉降相同的量。基于此背景,本研究调查了中国黄土高原小农业坡地(面积0.07公顷)土壤再分布过程对SOC含量和通量的影响以及相应的碳源和库功能。通过分析3×3m栅格小区表层,包括耕层和底土层(知道0.6m深度)的土壤样品来研究SOC储量的空间格局。在相同的土壤样品中,示踪放射性核素137Cs和过剩的2loPb的空间分布分别用来两国过去50年和100年净侵蚀和净沉积。研究结果表明,SOC在低坡地位置大量累积和稳定化,且含有最高活度的137Cs和210Pb储量。同时强调了对于易受侵蚀农业用地底土碳预算的重要性。基于克里格同归法预测SOC、137Cs和210Pb分布图显示,坡上面SOC弄的减少和穿过坡中部到沿边界的试验地底部坡下部凹面SOC浓度的增加表明SOC和空间分布和137Cs、210Pb相同。为了空间综合分析小规模耕地土壤再分布对SOC动力学的影响,通过SOC浓度与总土壤再分布(TSR)相乘来计算,而总土壤再分布包括由37Cs和210Pb含量和耕作侵蚀预测模型(TEP)得出的耕作和水引起的土壤再分配。该计算方法被用于涵盖每年SOC和由137Cs和210Pb活度测量估计的土壤再分布平衡的两个时期,1911-1954年和1954-2011年。137Cs和210Pb的测量可以提供山坡景观中期(-50年)和长期(100-150年)侵蚀土壤和SOC再分布格局的溯源信息。研究结果表明,由于水力侵蚀的输出作用,SOC在横向大量流失。在1911-1954年和1954-2011年期间,耕作引起的土壤再分布增加了SOC,并且在1911-1954年和1954-2011年期间分别补偿了由水蚀导致SOC流失量的3%、10%。在1911-1954年期间,整个坡面SOC净流失量为6.77t C ha-1(0.157t C ha-1yr-1).在1954-2011年间,SOC净流失量12.58t C ha-1(0.221t C ha-1yr-1)。由于通过铧式犁耕作引起的土壤再分布使得坡麓和背坡底边界区域的SOC显著增加。通过高纯锗伽马谱仪检测的不同坡面深度137Cs和210Pb充分证明了在地边界区域的沉积。土地管理方式对SOC的横向和垂直分布有重要影响。长期耕作的结果是SOC横向输出减少、横向流动增加,导致负C平衡减少。在一个连续的生长期(如在2011年),对最活跃的区域进行关于土壤再分布的土壤呼吸的现场测量。对于测量周期,尚未发现土壤再分布或者其他参数(如土壤特性和地形)空间格局的普遍关系,这凸显了土壤呼吸的变异性。然而,土壤呼吸与耕作侵蚀呈显著线性关系。因此,侵蚀点的碳流失可能在沉积点正将矿化中得到部分补偿。总之,本研究大大提高了关于在小型种植场规模中土壤再分布对SOC含量和通量的影响的认识和理解。

论文目录

  • 摘要
  • Abstract
  • LIST OF FIGURES
  • LIST OF TABLES
  • CHAPTER Ⅰ INDRODUCTION
  • CHAPTER Ⅱ DESCRIPTION OF THE STUDY SITE
  • CHAPTER Ⅲ SPATIAL DISTRIBUTION SOC AND SOILREDISTRIBUTION FROM 1954-2011 AND 1911-2011 PERIODS
  • Summary
  • 3.1 INTRODUCTION
  • 3.2 MATERIALS AND METHODS
  • 3.2.1 Soil sampling
  • 3.2.2 Soil analysis
  • 3.2.3 Soil redistribution analysis
  • 3.2.4 Terrain analysis
  • 3.2.5 Statistical and Geostatistical analysis
  • 3.2.5.1 Statistical analysis
  • 3.2.5.2 Geostatistical analysis
  • 3.2.5.3 Validation of spatial prediction
  • 3.3 RESULTS AND DISCUSSION
  • 137Cs and 210Pbex activity'>3.3.1 Measured the depth distribution of 137Cs and 210Pbexactivity
  • 137Cs and 210Pbex inventories and SOC content'>3.3.2 Measured horizontal distribution of 137Cs and 210Pbex inventories and SOC content
  • 3.3.3 Total soil redistribution from measurement
  • 3.3.4 Terrain parameters within study site
  • 3.3.5 Relations between soil properties, soil redistribution and terrain attributes
  • 3.3.6 Spatial prediction of SOC and Total soil redistributions
  • 3.4 CONCLUSION
  • CHAPTER Ⅳ DYNAMIC OF SOC INDUCED BY TILLAGE ANDWATER EROSION FROM 1911-1954 AND 1954-2011 PERIODS
  • Summary
  • 4.1 INTRODUCTION
  • 4.2 MATERIALS AND METHODS
  • 4.2.1 The estimation of water and tillage-induced soil redistribution
  • 4.2.2 Computing SOC redistribution induced by water and tillage erosion within study site
  • 4.2.3 The landform classification based on terrain attributes
  • 4.2.4 Data Analysis
  • 4.3 RESULTS AND DISCUSSION
  • 4.3.1 Soil redistribution induced by water and tillage erosion
  • 4.3.2 SOC dynamics by erosion and deposition within study site
  • 4.3.3 SOC displaced by water and tillage erosion on the different slope positions
  • 137Cs and 210Pbex for assessing the fate of eroded SOC'>4.3.4 Implication of 137Cs and 210Pbex for assessing the fate of eroded SOC
  • 4.4 CONCLUSION
  • CHAPTER Ⅴ SPATIAL VARIABILTY OF SOIL RESPIRATIONEFFECT OF TILLAGE AND WATER EROSION ON THE SLOPINGLAND
  • Summary
  • 5.1 INTRODUCTION
  • 5.2 MATERIALS AND METHODS
  • 5.2.1 Soil respiration,soil temperature and soil moisture
  • 5.2.2 Soil sampling and analysis
  • 5.2.3 Data analysis
  • 5.3 RESULTS AND DISCUSSION
  • 5.3.1 Variation on soil respiration,temperature,and moisture
  • 5.3.2 Resationship between soil respiration and soil redistribution
  • 5.3.5 Soil respiration vs.soil properties,terrain attributes and soil redistribution
  • 5.4 CONCLUSION
  • GENERAL CONCLUSIONS
  • REFERENCE
  • ACKNOWLEDGEMENT
  • RESUME
  • 相关论文文献

    • [1].Two-dimensional numerical simulation of sediment transport using improved critical shear stress methods[J]. International Journal of Sediment Research 2020(01)
    • [2].Response of slope surface roughness to wave-induced erosion during water level fluctuating[J]. Journal of Mountain Science 2020(04)
    • [3].Simulation of the landform change process on a purple soil slope due to tillage erosion and water erosion using UAV technology[J]. Journal of Mountain Science 2020(06)
    • [4].Performance of geosynthetic cementitious composite mat and vetiver on soil erosion control[J]. Journal of Mountain Science 2020(06)
    • [5].CFD analysis and field observation of tool erosion caused by abrasive waterjet fracturing[J]. Petroleum Science 2020(03)
    • [6].Regions and Their Typical Paradigms for Soil and Water Conservation in China[J]. Chinese Geographical Science 2020(04)
    • [7].Application of a new wind driving force model in soil wind erosion area of northern China[J]. Journal of Arid Land 2020(03)
    • [8].Investigation of erosion behavior of 304 stainless steel under solid–liquid jet flow impinging at 30°[J]. Petroleum Science 2020(04)
    • [9].Cathode erosion site distributions in an applied-field magnetoplasmadynamic thruster[J]. Plasma Science and Technology 2020(09)
    • [10].Impacts of wind erosion and seasonal changes on soil carbon dioxide emission in southwestern Iran[J]. Journal of Arid Land 2020(04)
    • [11].Theoretical expressions for soil particle detachment rate due to saltation bombardment in wind erosion[J]. Sciences in Cold and Arid Regions 2020(04)
    • [12].Microstructure and cavitation erosion behavior of sputtered NiCrAlTi coatings with and without N incorporations[J]. Journal of Materials Science & Technology 2020(19)
    • [13].Bank erosion in an Andean páramo river system: Implications for hydro-development and carbon dynamics in the neotropical Andes[J]. Journal of Mountain Science 2019(02)
    • [14].Modelling and mapping soil erosion potential in China[J]. Journal of Integrative Agriculture 2019(02)
    • [15].An experimental study on the influences of water erosion on wind erosion in arid and semi-arid regions[J]. Journal of Arid Land 2019(02)
    • [16].Preparation and arc erosion properties of Ag/Ti_2SnC composites under electric arc discharging[J]. Journal of Advanced Ceramics 2019(01)
    • [17].Long-term coastal erosion assessment along the coast of Karnataka,west coast of India[J]. International Journal of Sediment Research 2019(04)
    • [18].A soil quality index for evaluation of degradation under land use and soil erosion categories in a small mountainous catchment, Iran[J]. Journal of Mountain Science 2019(11)
    • [19].Effect of thickness of planar nozzles on erosion depth of levee soils subjected to plunging water[J]. International Journal of Sediment Research 2018(03)
    • [20].Uncertainty of soil erosion modelling using open source high resolution and aggregated DEMs[J]. Geoscience Frontiers 2017(03)
    • [21].Assessment of agri-spillways as a soil erosion protection measure in Mediterranean sloping vineyards[J]. Journal of Mountain Science 2017(06)
    • [22].Spatial and temporal change patterns of freeze-thaw erosion in the three-river source region under the stress of climate warming[J]. Journal of Mountain Science 2017(06)
    • [23].An experimental study on the influences of wind erosion on water erosion[J]. Journal of Arid Land 2017(04)
    • [24].Uranium comminution age responds to erosion rate semiquantitatively[J]. Acta Geochimica 2017(03)
    • [25].An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing[J]. Journal of Arid Land 2015(03)
    • [26].Steady-state coupled analysis of flowfields and thermochemical erosion of C/C nozzles in hybrid rocket motors[J]. Science China(Technological Sciences) 2015(03)
    • [27].Cogitation on developing a dynamic model of soil wind erosion[J]. Science China Earth Sciences 2015(03)
    • [28].Interactions between wind and water erosion change sediment yield and particle distribution under simulated conditions[J]. Journal of Arid Land 2015(05)
    • [29].Modeling spatial and temporal change of soil erosion based on multi-temporal remotely sensed data[J]. Sciences in Cold and Arid Regions 2015(06)
    • [30].Analysis of Soil Anti-erosion Characteristics under Artificial Rainfall Conditions[J]. Meteorological and Environmental Research 2013(11)

    标签:;  ;  ;  

    耕作与水蚀引起坡耕地土壤有机碳空间变化
    下载Doc文档

    猜你喜欢