几类风险模型的风险理论及相关问题

几类风险模型的风险理论及相关问题

论文摘要

Levy过程是一具有独立平稳增量的随机过程,具有如马尔可夫性,无穷可分性等许多良好的性质,在金融数学中一直扮演着重要的角色.另一方面,风险理论中的许多风险模型,如经典风险模型(复合泊松过程),带干扰的经典风险模型,布朗运动等,均是一些特殊的Levy过程.这时,不禁要问若风险模型中描述保险风险的基本盈余过程为一般的Levy过程,其破产问题会是什么样子的?近几年来,许多学者对基本盈余过程为谱负的Levy过程的风险模型进行了研究.在本文第二至六章中,利用逼近的的方法对具有正、负跳跃的Levy风险模型及具有投资收益的Levy风险模型进行了初步的研究并且讨论了两类由某特殊Levy过程决定的并且具有某分红策略的Ornstein-Uhlenbeck型风险过程的分红问题.渐近估计方法是研究破产问题的一种常用方法.在第七、八章中,首先给出了随机游动阶梯高度及极大值的局部估计和尾估计以及一瑕疵更新方程解的渐近估计,然后将结果应用到风险理论中,得到了一些新结论.迄今,大多数风险模型都假定索赔时间间隔与索赔量是独立的.若两者关,会对破产概率及其他相关的量产生怎样的影响.在本文的最后一章,我们研究了一类索赔时间间隔与索赔量相关且带干扰的风险模型.根据内容本文分为以下九章:第一章:我们介绍了Levy过程及一些轻尾,重尾分布族的定义以及Levy过程的一些基本定理.对于论文中用到的一些符号也给出了规定.第二章:我们推广了Garrido and Morales[47]的Levy风险过程,引入了既有正跳跃又有负跳跃的Levy风险过程,其具有下面的形式U(t)=u+ct-S(t),t≥0,过程{S(t),t≥0}为一具有正、负跳跃的Levy过程,它包含了非连续收取的保费和索赔总量.在本章中,利用逼近的方法,得到了此风险过程的罚金折现函数Φ满足的更新方程及其Φ的一个级数表达式.在第四节中,我们还讨论了上风险过程在初始盈余值趋于无穷大时,其破产概率的一些渐近形式.第三章:设Ut为一个具有风险投资回报的风险过程在t时刻的盈余值,具有以下形式Ut=eMt(u+∫0te-MsdRs),t≥0,U0=u.其中,保险公司的基本盈余过程为一Levy风险过程:Rt=ct-Jt+σBt.索赔总量过程{Jt,t≥0)为一无漂移和干扰项的Levy过程.过程{eMt=eδt+rWt,t≥0}是一几何布朗运动,δ>0,r是两个固定的参数.{Bt,t≥0}和{Wt,t≥0}为两个相互独立的一维标准布朗运动.在本章中,利用逼近的方法得到了破产概率满足的积分-微分方程.第四章:假设某保险公司采用这样的财政策略:当公司的资产大于某一水平△(>0)时,超过△的部分进行投资,取得利息率为r(≥0)的收益;当公司的资产为负值但不低于某一特定的值(-c/δ)时,通过贷款来继续维持公司的运作,贷款利率为δ(>0).设U(t)为采用上述策略后某保险公司在t时刻的盈余,满足下面的随机微分方程:索赔总量过程Z=:{Z(t),t≥0}是一个无漂移部分的从属过程(Subordinator).通过研究绝对破产时刻,绝对破产前的瞬间盈余及绝对破产时的赤字三者的联合分布来研究上模型的绝对破产问题.首先,得到了当索赔总量过程为复合泊松过程时,联合分布满足的积分-微分方程,并给出了方程的一般解.利用上述结果我们得到了当索赔总量过程为从属过程时,联合分布的一个表达式.第五章:设具有某一分红策略的保险公司在t时刻的盈余值过程R={Rt,t≥0)为一Ornstein-Uhlenbeck型风险过程,满足下面的随机微分方程dRt=(μ+ρRt-l(t))dt+σdWt,其中,{Wt,t≥0}为一标准的布朗运动,μ,ρ,σ>0为三个固定的常数,l(t)表示在t时刻的分红率函数.本章,讨论了当l(t)为有界函数时,分红策略的最优分红问题.第六章:设带有固定分红策略的α-平稳Ornstein-Uhlenbeck(1<α≤2)型风险过程X:={Xt,t≥0}满足下面的随机微分方程:dXt=-λXtdt+dZt-dDt,t≥0,其中,λ>0为一固定的参数,{Zt,t≥0)为谱负α-平稳过程.D:={Dt,t≥0)为到时刻t为止的分红总量.利用广义Wright’s超几何函数给出此模型分红总量折现值各阶矩的表达式.第七章:在本章中,讨论了实数域上具有负均值的随机游动,得到了在指数估计不成立的条件下,此随机游动的阶梯高度和极大值的局部估计以及尾估计.随后,我们将这些结果应用到风险理论中的Sparre Andersen模型中.第八章;本章,我们对一类瑕疵更新方程解进行了研究,得到了其解的非指数渐近表达式,并将结果应用到风险理论中.第九章:在本章中,讨论了一个索赔相依且带干扰的风险模型,利用Laplace变换研究了破产时刻,破产前的瞬间盈余及破产时的赤字的联合分布,得到了此联合分布Laplace变换的一个表达式.当上风险模型具有部分分红策略时,研究了分红折现期望及矩母函数,得到了他们的一个表达式.

论文目录

  • 摘要
  • Abstract
  • Chapter 1 Preliminaries
  • 1.1 Notations
  • 1.2 The Levy processes
  • 1.3 The light-tailed and heavy-tailed distributions
  • Chapter 2 The G-S function for Levy insurance risk processes
  • 2.1 Introduction
  • 2.2 The G-S function of a generalized Cramer-Lundberg model
  • 2.3 The G-S function for Levy risk processes
  • 2.4 The ruin probability
  • 2.5 An example
  • Chapter 3 On the ruin probability for a Levy risk process compounded by a geometric Brownian motion
  • 3.1 Introduction
  • 0)< +∞'>3.2 Integro-differential equations: when q(R0)< +∞
  • 3.3 Integro-differential equations: general cases
  • 3.4 An example
  • Chapter 4 On a risk process driven by a subordinator and with liquid reserves, credit and debit interest
  • 4.1 Introduction
  • 4.2 The classical risk model with liquid reserves, credit and debit interest.
  • 4.3 The G-S function for Levy risk processes
  • Chapter 5 Optimal dividends in a controlled Ornstein-Uhlenbeck type model
  • 5.1 Introduction
  • 5.2 Main results
  • Chapter 6 Dividend problem in an α-stable Ornstein-Uhlenbeck type risk process
  • 6.1 An insurance risk process
  • 6.2 The moments of D
  • Chapter 7 Ladder height and supremum of a random walk with application
  • 7.1 Introduction
  • 7.2 Ladder Height Distributions
  • 7.3 Distributions of the Supremum
  • 7.4 Application to Risk Theory
  • Chapter 8 Asymptotics for solutions of a defective renewal equation with applications
  • 8.1 Introduction
  • 8.2 Preliminaries
  • 8.3 Asymptotic behaviors of the solution
  • 8.4 Application to ruin theory
  • Chapter 9 A jump-diffusion risk model with dependence between claimsizes and claim intervals
  • 9.1 Introduction
  • i'>9.2 The Laplace transform of Wi
  • u,b'>9.3 The expectation of Du,b
  • 参考文献
  • 致谢
  • 攻读博士学位期间发表和完成的主要学术论文及参加的基金项目
  • 相关论文文献

    • [1].基于供应链思维的存货削减模型研究及应用[J]. 铁路采购与物流 2020(01)
    • [2].基于多模型融合的工业工件剩余寿命预测[J]. 自动化与信息工程 2020(01)
    • [3].考虑行人相对速度的改进社会力模型的验证与评估[J]. 计算机科学 2020(02)
    • [4].基于遥感和站点观测数据的生态系统呼吸模型比较[J]. 遥感技术与应用 2020(02)
    • [5].稻田施用农药的地表水暴露评估模型研究进展[J]. 生态与农村环境学报 2020(05)
    • [6].“模型认知”是重要思维方式[J]. 化学教学 2020(05)
    • [7].管理创新过程管控模型的构建与应用[J]. 科技经济导刊 2020(17)
    • [8].理解“模型认知”素养的不同视角[J]. 课程.教材.教法 2020(04)
    • [9].金融智能化不可忽视的模型风险[J]. 武汉金融 2020(06)
    • [10].人口死亡统计的间接模型研究[J]. 人口与经济 2020(04)
    • [11].弗里嘉的模型虚构论研究[J]. 科学文化评论 2020(03)
    • [12].基于离散时间风险模型下的亏损破产概率的研究[J]. 甘肃科学学报 2017(02)
    • [13].高维稀疏对角GARCH模型的估计及应用[J]. 数学的实践与认识 2017(11)
    • [14].信息系统成功模型在卫生领域的应用及扩展[J]. 信息系统工程 2016(05)
    • [15].例谈化学模型的特征、作用与类型[J]. 中学教学参考 2020(11)
    • [16].构建人才甄选道德模型[J]. 经济管理文摘 2019(17)
    • [17].“一线三等角”模型在中考中的应用[J]. 初中生学习指导 2020(18)
    • [18].巧用隐圆模型 突破思维壁垒[J]. 数理化解题研究 2020(17)
    • [19].借“模型”之力促教学相长[J]. 新课程 2020(25)
    • [20].两类典型牵引模型规律的对比探究[J]. 湖南中学物理 2020(04)
    • [21].建构模型认知 促进深度学习——高三二轮复习“实验方案的设计与评价”[J]. 化学教与学 2020(05)
    • [22].重要模型“一线三等角”[J]. 中学生数理化(八年级数学)(配合人教社教材) 2020(10)
    • [23].什么是“做模型”[J]. 模型世界 2018(11)
    • [24].广州文华模型[J]. 模型世界 2019(01)
    • [25].《模型世界》火热预订[J]. 模型世界 2019(01)
    • [26].基于模型构建 引领思维发展[J]. 高中数学教与学 2018(13)
    • [27].模型世界征募志愿者啦![J]. 模型世界 2015(08)
    • [28].《模型·北京212》[J]. 山西文学 2015(08)
    • [29].模型世界[J]. 模型世界 2014(04)
    • [30].浅谈自制模型在生物教学中的优势[J]. 山东教育 2014(Z6)

    标签:;  ;  ;  ;  ;  ;  ;  

    几类风险模型的风险理论及相关问题
    下载Doc文档

    猜你喜欢