非晶态碳膜和碳氮薄膜的结构与性质

非晶态碳膜和碳氮薄膜的结构与性质

论文摘要

非晶态碳薄膜和碳氮薄膜因其各种优良性质,如高硬度、耐磨损、可调光学带隙、大范围变化的导电能力等引起了人们的研究兴趣。但是目前有关碳的各种杂化态、碳薄膜中的无序化程度以及N掺杂对碳薄膜的光学和电学性质的影响的研究报道结论不尽相同,尚需要进行深入的研究。本论文采用双对向靶直流磁控溅射系统制备了两个系列样品,即不同溅射功率下的碳薄膜和不同氮气分压下的碳氮薄膜,并对样品的微观结构、光学、电学和缺陷态等性质进行了系统研究。不同溅射功率下制备的非晶态碳薄膜(a-C)均富含sp2C,sp2C聚集起来形成团簇的尺寸都非常小,薄膜中的无序化程度很高。因此,整体上看,薄膜的光学带隙都比较窄,室温电导率比较高,这不同于宽带隙的四面体碳(ta-C)和类金刚石碳(DLC)等类绝缘体材料。提高溅射功率可导致a-C薄膜内层中一些先前形成的sp3键向sp2键转变,薄膜中sp2C含量以及sp2C团簇的数目或尺寸相对有所增加;薄膜的光学带隙值从0.11 eV增加到0.70 eV,室温电导率减小两个数量级,从电子顺磁共振谱(EPR)获得的顺磁缺陷密度N s总体上增加了。低溅射功率下,与键角畸变有关的结构无序是导致光学带隙变窄的主要因素。提高溅射功率,薄膜的局域化参数N ( EF)?γ?3一直减小,说明低温下薄膜中电子跳跃导电能力减弱。随着氮气分压的增加,一部分C与N结合导致薄膜中的N含量先增加而后趋于饱和。掺入的N更倾向于与C形成各种非芳香环状结构的CN相,如N–sp3C、C≡N和N–sp2C等链状和闭合环状结构。薄膜的光学带隙、光学常数(n, k)以及导电能力的变化与大范围形成的非芳香环状结构CN相有关。l nσT?1/4关系曲线的前导因子σ00和斜率T0 1/4几乎呈线性增加变化,说明CN薄膜中发生的跳跃传导是带尾局域态内电子的跳跃导电。随着氮气分压增加,EPR一阶微分谱线中高斯分量所占比例增加,自旋与自旋之间的交换作用导致谱线的峰–峰宽度减小,N s总体上有所增加。

论文目录

  • 中文摘要
  • ABSTRACT
  • 第一章 前言
  • 1.1 非晶态碳膜(a-C)的研究背景
  • 1.1.1 a-C 薄膜的化学键结构
  • 1.1.2 a-C 薄膜的电子性质
  • 1.1.2.1 a-C 薄膜中的类扩展态和局域态
  • 1.1.2.2 缺陷态
  • 1.1.3 a-C 薄膜的光学性质
  • 1.1.4 a-C 薄膜的电学性质
  • 1.1.5 a-C 薄膜研究中存在的问题
  • 1.2 掺杂a-C 薄膜
  • 1.2.1 掺杂对a-C 薄膜力学性质的影响
  • 1.2.2 掺杂对a-C 薄膜磁学性质的影响
  • 1.2.3 掺杂对a-C 薄膜光学性质的影响
  • 1.2.4 掺杂对a-C 薄膜电学性质的影响
  • 1.2.5 掺杂a-C 薄膜研究中存在的问题
  • 1.3 本论文的主要工作
  • 第二章 样品的制备、结构表征和物性测量
  • 2.1 非晶态碳膜和碳氮薄膜的制备
  • 2.2 厚度测量
  • 2.3 微观结构表征
  • 2.4 光学性质测量
  • 2.5 低温技术和电输运特性测量
  • 2.6 缺陷态测量
  • 第三章 非晶碳薄膜的结构和性质
  • 3.1 a-C 薄膜的结构
  • 3.2 a-C 薄膜的光学性质
  • 3.3 a-C 薄膜的电学性质
  • 3.4 a-C 薄膜中的缺陷态
  • 3.5 本章小结
  • 第四章 非晶态碳氮薄膜的结构和性质
  • 4.1 a-CN 薄膜的结构
  • 4.2 a-CN 薄膜的光学性质
  • 4.3 a-CN 薄膜的电学性质
  • 4.4 a-CN 薄膜中的缺陷态
  • 4.5 本章小结
  • 第五章 结论
  • 参考文献
  • 攻读硕士学位期间发表的学术论文
  • 致谢
  • 相关论文文献

    • [1].圆形薄膜预应力测量[J]. 工程塑料应用 2020(03)
    • [2].低光泽度热隐身光子晶体薄膜[J]. 真空科学与技术学报 2019(11)
    • [3].铁酸铋薄膜的电学特性及掺杂影响分析[J]. 化工新型材料 2017(03)
    • [4].有限尺寸硬薄膜/软基底的屈曲分析[J]. 力学季刊 2017(02)
    • [5].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2015(06)
    • [6].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2016(01)
    • [7].国际薄膜大会Thin Films 2016 新加坡2016.07.12-15[J]. 真空 2016(02)
    • [8].国际薄膜大会Thin Films 2016[J]. 真空 2016(03)
    • [9].可怜的小鸭子[J]. 意林(少年版) 2013(11)
    • [10].大棚薄膜破损咋修补[J]. 农业知识 2009(29)
    • [11].基于电化学聚合方法制备荧光薄膜及其在爆炸物检测中的研究[J]. 化学与粘合 2020(01)
    • [12].欧洲开发抗菌薄膜[J]. 绿色包装 2020(07)
    • [13].谈一谈薄膜数字印刷的优势和成本考量[J]. 印刷技术 2019(03)
    • [14].薄膜传输系统导向辊牵引特性研究[J]. 西安理工大学学报 2016(04)
    • [15].铁酸铋薄膜退火工艺研究进展[J]. 表面技术 2017(02)
    • [16].电沉积制备镍-铁薄膜及其性能的研究[J]. 电镀与环保 2017(04)
    • [17].原子层沉积二硫化钼薄膜的机理及生长薄膜的质量[J]. 东南大学学报(自然科学版) 2017(05)
    • [18].2014年全球特种薄膜销售额将达到297.7亿美元[J]. 印刷技术 2010(02)
    • [19].中国进口薄膜级HDPE供应将趋紧[J]. 塑料工业 2010(07)
    • [20].一种Sb_2S_3热电薄膜的制备方法[J]. 电镀与精饰 2009(07)
    • [21].管状弹簧介电薄膜作动器粘弹性变形研究[J]. 甘肃科学学报 2019(06)
    • [22].薄膜基荧光传感检测的研究进展[J]. 中国科学:化学 2020(01)
    • [23].烧结氛围对铜锌锡硫硒薄膜性质的影响[J]. 内蒙古师范大学学报(自然科学汉文版) 2020(03)
    • [24].少层二硫化钼薄膜的制备及其光谱特性[J]. 半导体技术 2020(09)
    • [25].薄膜生产中防止薄膜粘连应用研究[J]. 中国设备工程 2020(18)
    • [26].“长寿薄膜”问世 寿命高达25年[J]. 橡塑技术与装备 2017(04)
    • [27].基于动力学标度法的a-C:H薄膜表面微观形貌的演变机理研究[J]. 原子能科学技术 2017(04)
    • [28].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 化工管理 2014(34)
    • [29].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 分析测试学报 2014(12)
    • [30].欧盟创新型中小企业研制成功过滤薄膜自清洁技术[J]. 企业技术开发 2014(34)

    标签:;  ;  ;  ;  ;  ;  

    非晶态碳膜和碳氮薄膜的结构与性质
    下载Doc文档

    猜你喜欢