大尺寸TiAl基合金板材制备技术的研究

大尺寸TiAl基合金板材制备技术的研究

论文摘要

采用添加不同比例的钒元素和铌元素,设计了Ti-45Al-4.5V-4.5Nb-0.3Y,Ti-45Al-6V-3Nb-0.3Y , Ti-45Al-7V-2Nb-0.3Y , Ti-45Al-5.4V-3.6Nb-0.3Y四种TiAl基合金。其典型的组织为近层片组织,相组成为γ相以及少量的B2、α2相和YAl2相。通过热模拟实验,确定Ti-45Al-5.4V-3.6Nb-0.3Y合金在高温下具有较低的流动应力,并表现出较好的塑性。进一步调整铝含量优化成分,得到Ti-41Al-5.4V-3.6Nb-0.3Y和Ti-43Al-5.4V-3.6Nb-0.3Y合金。Ti-41Al-5.4V-3.6Nb-0.3Y合金在热变形过程中的峰值应力达到37.4Mpa,表现出较好的高温塑性,适合高温锻造及轧制。Ti-41Al-5.4V-3.6Nb-0.3Y的抗压强度为2040Mpa,压缩率为23%; Ti-43Al-5.4V-3.6Nb-0.3Y的抗压强度为1700Mpa,压缩率为19%。采用水冷铜坩埚真空感应熔炼工艺制备Ti-43Al-9V-0.3Y合金铸锭。结果表明,铸态TiAl基合金的相组成为α2、γ、BB2和少量的YAl2相,铸态组织的平均晶粒在80μm。采用包套锻造方法制备TiAl基合金饼材,锻后合金的相组成仍为α2、γ、B2和YAl2相。经过塑性变形和再结晶过程,合金中的片层组织消失,晶粒得到明显细化。采用包套轧制技术制备了表面质量良好的尺寸为368×120×2mm的TiAl基合金板材。轧态Ti-43Al-9V-0.3Y合金的显微组织为细小的近γ组织,γ晶粒平均尺寸约为20μm,B2相呈网络状分布在γ晶粒周围,此外,还有极少量细小的YAl2颗粒均匀分布在合金当中。轧态Ti-43Al-9V-0.3Y合金力学性能得以提高,抗压强度可高达到2901Mpa,压缩率为41.7%。

论文目录

  • 摘要
  • Abstract
  • 第1章 绪论
  • 1.1 引言
  • 1.2 TiAl基合金相图及显微组织
  • 1.2.1 TiAl基合金相图
  • 1.2.2 TiAl基合金显微组织
  • 1.3 TiAl基合金力学性能
  • 1.3.1 强度
  • 1.3.2 塑性
  • 1.3.3 抗蠕变性
  • 1.3.4 断裂韧性
  • 1.4 TiAl基合金成形技术
  • 1.4.1 铸锭冶金
  • 1.4.2 粉末冶金
  • 1.4.3 精密铸造
  • 1.5 国内外TiAl基板材的研究状况
  • 1.5.1 国外研究状况
  • 1.5.2 国内研究状况
  • 1.6 稀土元素在高温合金中的应用
  • 1.7 课题的提出及主要研究内容
  • 第2章 材料制备及实验方法
  • 2.1 加工路线
  • 2.2 TiAl基合金铸锭制备
  • 2.3 均匀化热处理和热等静压
  • 2.4 包套锻造
  • 2.5 包套轧制
  • 2.6 等温锻造模拟实验
  • 2.7 显微组织及相分析
  • 2.8 压缩性能测试
  • 第3章 TiAl基合金成分设计及热模拟
  • 3.1 引言
  • 3.2 TiAl基合金成分设计
  • 3.2.1 铝含量设计
  • 3.2.2 钒含量设计
  • 3.2.3 铌含量设计
  • 3.2.4 钇含量设计
  • 3.2.5 合金名义成分
  • 3.3 TiAl基合金显微组织和相组成
  • 3.3.1 TiAl基合金XRD分析
  • 3.3.2 TiAl基合金显微组织分析
  • 3.3.3 TiAl基合金能谱分析
  • 3.4 TiAl基合金热模拟实验
  • 3.4.1 引言
  • 3.4.2 真应力-真应变曲线
  • 3.4.3 热压变形后宏观形貌及显微组织分析
  • 3.5 TiAl基合金成分优化
  • 3.5.1 铝含量的优化
  • 3.5.2 优化后的相组成及组织分析
  • 3.5.3 真应力-真应变曲线
  • 3.5.4 室温压缩性能测试及断口分析
  • 3.6 本章小结
  • 第4章 TiAl基合金板材的制备及组织性能
  • 4.1 引言
  • 4.2 TiAl基合金的熔炼
  • 4.3 铸态合金显微组织分析
  • 4.3.1 相组成
  • 4.3.2 显微组织
  • 4.4 锻造工艺的选择
  • 4.4.1 引言
  • 4.4.2 包套材料的选择
  • 4.4.3 包套厚度的选择
  • 4.4.4 锻造温度的选择
  • 4.4.5 变形速率的选择
  • 4.5 锻饼制备及锻态显微组织
  • 4.6 板材制备及轧态显微组织
  • 4.6.1 轧制包套材料的选择
  • 4.6.2 轧制工艺的制定
  • 4.6.3 相组成及显微组织
  • 4.7 轧态室温压缩性能测试及断口分析
  • 4.7.1 压缩曲线
  • 4.7.2 断口分析
  • 4.8 本章小结
  • 结论
  • 参考文献
  • 攻读学位期间发表的学术论文
  • 致谢
  • 相关论文文献

    • [1].PST TiAl single crystals for high temperature applications[J]. Science Foundation in China 2016(04)
    • [2].Advances in phase relationship for high Nb-containing TiAl alloys[J]. Rare Metals 2016(01)
    • [3].新型超轻TiAl多孔材料的制备及其力学性能[J]. 稀有金属材料与工程 2016(09)
    • [4].γ–TiAl金属间化合物加工的国内外研究现状[J]. 航空制造技术 2020(04)
    • [5].Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy[J]. Rare Metals 2017(04)
    • [6].TiAl金属间化合物纳米粉末的相转变[J]. 稀有金属材料与工程 2015(05)
    • [7].Fabrication of in situ Ti_2AlN/TiAl Composites by Reaction Hot Pressing and Their Properties[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2014(01)
    • [8].A first-principles study of site occupancy and interfacial energetics of an H-doped TiAl-Ti_3 Al alloy[J]. Science China(Physics,Mechanics & Astronomy) 2012(02)
    • [9].Structural and Thermodynamic Properties of TiAl intermetallics under High Pressure[J]. Communications in Theoretical Physics 2012(01)
    • [10].Synthesis of C_f/TiAl_3 Composite by Infiltration-In Situ Reaction[J]. Journal of Materials Science & Technology 2009(06)
    • [11].Effects of Nb and Si on high temperature oxidation of TiAl[J]. Transactions of Nonferrous Metals Society of China 2008(03)
    • [12].Oxidation behavior of niobized TiAl by plasma surface alloying[J]. Journal of University of Science and Technology Beijing 2008(05)
    • [13].聚片孪生TiAl单晶及其应用展望[J]. 振动.测试与诊断 2019(05)
    • [14].TiAl合金的热暴露表面及其对室温拉伸性能的影响[J]. 钢铁研究学报 2010(11)
    • [15].TiAl多孔材料的研制[J]. 稀有金属材料与工程 2008(S4)
    • [16].TiAl合金及其复合材料的研究进展与发展趋势[J]. 燕山大学学报 2020(02)
    • [17].Crack propagation mechanism of γ-TiAl alloy with pre-existing twin boundary[J]. Science China(Technological Sciences) 2019(09)
    • [18].不同表面状态和热暴露对γ-TiAl合金疲劳性能的影响[J]. 稀有金属材料与工程 2017(02)
    • [19].Y掺杂γ-TiAl电子结构的第一性原理计算[J]. 稀有金属材料与工程 2017(02)
    • [20].长期热暴露对含钨铌γ-TiAl合金疲劳及表面损伤容限的影响[J]. 中国有色金属学报 2016(06)
    • [21].新型Ti_3AlC_2-Al_2O_3/TiAl_3复合材料的组织结构与性能[J]. 复合材料学报 2015(01)
    • [22].TiAl合金离子渗碳摩擦磨损性能研究[J]. 材料科学与工艺 2011(02)
    • [23].热暴露对铸造TiAl合金表面完整性及拉伸性能的影响[J]. 钢铁研究学报 2011(11)
    • [24].热压反应合成Al_2O_3-Ho_2O_3/TiAl复合材料[J]. 粉末冶金技术 2010(01)
    • [25].Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry 2010(03)
    • [26].High-temperature oxidation behavior of Al_2O_3/TiAl matrix composite in air[J]. Science in China(Series E:Technological Sciences) 2009(05)
    • [27].Fabrication and Mechanical Properties of Al_2O_3/TiAl Composites[J]. Journal of Wuhan University of Technology(Materials Science Edition) 2009(05)
    • [28].Diffusion Bonding of Dissimilar Intermetallic Alloys Based on Ti_2AlNb and TiAl[J]. Journal of Materials Science & Technology 2009(06)
    • [29].Theoretical Calculations for Structural, Elastic and Thermodynamic Properties of γTiAl Under High Pressure[J]. Communications in Theoretical Physics 2008(12)
    • [30].基于最小加工表面裂纹的TiAl合金铣削参数优化[J]. 宇航材料工艺 2020(02)

    标签:;  ;  ;  ;  ;  

    大尺寸TiAl基合金板材制备技术的研究
    下载Doc文档

    猜你喜欢