基于支持向量机的数字水印技术研究

基于支持向量机的数字水印技术研究

论文摘要

计算机网络技术和多媒体处理技术的迅猛发展,使得多媒体信息的安全问题成为目前一个相当重要而又富有挑战性的研究课题。数字水印技术就是在这种背景下产生的并很快获得了业界的广泛重视,成为当前发展最为迅速的领域之一。因此,针对不同的应用领域,研究性能良好的数字水印系统有着重要的理论和现实意义。将一种新的机器学习方法——支持向量机(SVM)引入数字水印领域,以期望最大限度地改善水印系统的综合性能,同时也为支持向量机在图像处理和信息安全领域中的新的应用进行有益的探索。在对支持向量机理论分析的基础上,针对目前数字水印技术的研究现状和存在的一些不足,分析了支持向量机在数字图像水印中可能潜在的一些应用,针对其中的一些应用进行了深入的研究和探索。研究了数字水印领域中支持向量机的参数选择问题,提出一种变尺度混沌优化SVM模型参数的算法,并给出了设定模型参数初始值范围的方法。该算法将SVM模型参数的选择看作是参数的组合优化,通过建立合理的优化目标函数,采用变尺度混沌优化算法来搜索最优目标函数值。为提高搜索效率,算法根据寻优过程中得到的临时最优解,不断缩小优化变量的搜索空间。在此算法基础上,通过大量实验,分析了回归支持向量机(SVR)模型参数对数字图像水印性能的影响,得出了纹理复杂程度不同的图像的比较理想的SVR学习参数范围。针对空域水印算法普遍较差问题,结合支持向量机优良的学习性能,提出一种基于支持向量回归的空域盲水印嵌入算法。该算法根据空域图像邻域像素的灰度值之间具有很强的相关性这一特点,运用回归支持向量机建立图像中邻域像素之间的内在关系模型,通过调整关系模型的输出值与目标值之间的大小关系来隐藏水印信息。提取水印时,不需要原始载体图像和水印图像,只需要根据水印嵌入位置的密钥就可以通过关系模型恢复出水印。实验结果表明了此算法的有效性。根据SVM与人眼视觉系统在自学习、泛化和非线性逼近等方面具有极大的相似性,结合图像的局部相关性特性,提出一种基于模糊支持向量机的自适应水印算法。该算法利用SVM来模拟人眼视觉系统特征,构造了以信息熵、亮度、对比度和纹理掩蔽值四个分量组成的特征向量的一些样本,从而为空域图像像素建立分类模型,根据此模型自适应地确定水印的最佳嵌入位置和嵌入强度。在利用SVM建立分类模型时,根据人类视觉的模糊特性,提出一种基于支持向量机的模糊多分类方法(FMSVC),运用FMSVC对图像像素进行模糊分类,并采用无监督的模糊聚类分析方法为有监督的支持向量机构造训练样本。实验表明了此算法的有效性。结合小波变换的多分辨率特点和支持向量机在理论上和学习上的优势,研究了小波域中基于SVM的水印算法,提出了小波域中基于SVM方向树模型的鲁棒水印算法和半脆弱水印算法。首先根据小波变换空频局域性特点,给出了小波系数方向树的概念,然后运用支持向量机建立了方向树上根节点与其子孙节点之间的依赖关系模型(即方向树模型),根据此模型设计了两种水印算法。其中,基于方向树模型的鲁棒水印算法将图像的空域和变换域相结合,采用模糊聚类分析的方法从空域中选取合适的水印嵌入位置,并映射到小波变换域的相应子带区域,从而自适应地确定水印嵌入的位置,水印嵌入的强度由嵌入位置的隶属度决定。而基于方向树模型的半脆弱水印算法通过密钥随机选择水印的嵌入位置,如果不知道模型参数和密钥,很难检测出水印。由于SVM模型捆绑了方向树上的小波系数之间的关系,对图像中任何一点的修改都会影响到水印位的正确恢复,因此要想绕过水印而对图像进行篡改有着很高的难度。算法通过一个滑动窗口对中值滤波后的篡改信息矩阵进行扫描,计算各滑动窗口的局部篡改率,根据最大局部篡改率来判断是常规操作还是恶意的篡改。实验表明了两种算法的有效性。

论文目录

  • 摘要
  • ABSTRACT
  • 1 绪论
  • 1.1 研究背景与研究意义
  • 1.2 数字水印技术的研究现状
  • 1.3 数字水印系统的基本模型
  • 1.4 本文的主要研究内容
  • 2 支持向量机及其在数字水印中的应用分析
  • 2.1 引言
  • 2.2 统计学习理论
  • 2.3 支持向量机及其学习算法
  • 2.4 支持向量机在数字图像水印中的应用分析
  • 2.5 本章小结
  • 3 基于变尺度混沌优化算法的支持向量机参数选择
  • 3.1 引言
  • 3.2 模型参数对SVM 性能的影响
  • 3.3 基于变尺度混沌优化算法的SVM 参数选择
  • 3.4 基于支持向量回归的空域水印算法
  • 3.5 仿真实验及模型参数对水印性能的影响分析
  • 3.6 本章小结
  • 4 基于模糊支持向量机的自适应图像水印
  • 4.1 引言
  • 4.2 自适应数字图像水印技术
  • 4.3 模糊支持向量机多分类算法
  • 4.4 自适应图像水印算法的FMSVC 模型
  • 4.5 基于FMSVC 的自适应图像水印算法
  • 4.6 抗攻击实验
  • 4.7 本章小结
  • 5 小波域中基于支持向量机的数字水印
  • 5.1 引言
  • 5.2 小波域图像水印的基本框架
  • 5.3 基于SVM 的小波系数方向树模型
  • 5.4 基于方向树模型的鲁棒水印
  • 5.5 基于方向树模型的半脆弱水印
  • 5.6 抗攻击实验
  • 5.7 本章小结
  • 6 全文总结与展望
  • 6.1 论文总结
  • 6.2 未来工作的展望
  • 致谢
  • 参考文献
  • 附录 攻读学位期间发表的论文目录
  • 相关论文文献

    • [1].安海峰水印作品[J]. 歌海 2019(06)
    • [2].一种基于程序执行时间量化分析的软件水印方法[J]. 电子与信息学报 2020(08)
    • [3].云平台中软件水印的应用研究[J]. 电脑知识与技术 2020(20)
    • [4].简单删除文档中的尴尬水印[J]. 电脑知识与技术(经验技巧) 2019(09)
    • [5].一种抗任意角度旋转的全息水印算法[J]. 包装工程 2017(17)
    • [6].为您的图片打上精彩别致的水印[J]. 电脑知识与技术(经验技巧) 2016(03)
    • [7].基于决策树的水印鲁棒性研究[J]. 电脑编程技巧与维护 2015(04)
    • [8].软件水印及其研究现状概述[J]. 计算机应用与软件 2015(04)
    • [9].一键图片加水印[J]. 少年电脑世界 2020(Z2)
    • [10].网上就能为图片添加水印[J]. 电脑爱好者(普及版) 2009(09)
    • [11].在线添加图片水印[J]. 电脑迷 2008(06)
    • [12].柔情似水,印证我心 手把手教“妮”做水印[J]. 电脑爱好者 2009(10)
    • [13].图片水印轻松去除[J]. 电脑迷 2010(04)
    • [14].带你参观能驱赶“水印”的驱逐舰[J]. 电脑爱好者 2010(06)
    • [15].图片水印快去除[J]. 电脑迷 2010(12)
    • [16].点点鼠标 图片水印去无踪[J]. 电脑爱好者(普及版) 2010(11)
    • [17].图片去水印的“编外”技法[J]. 电脑爱好者 2016(07)
    • [18].江南水印(四首)[J]. 芙蓉 2015(05)
    • [19].《水印玻璃杯》[J]. 雪莲 2015(18)
    • [20].《水印玻璃杯》[J]. 雪莲 2015(17)
    • [21].一种基于代码混淆的静态软件水印的方案[J]. 河南科学 2013(12)
    • [22].水印诗画[J]. 诗歌月刊 2013(03)
    • [23].为图片巧加“隐形”水印[J]. 网友世界 2010(Z1)
    • [24].在线添加水印,改图网最给力[J]. 网友世界 2011(14)
    • [25].凭有水印图片,能找类似无水印图片[J]. 网友世界 2011(15)
    • [26].基于语义特征的电子海图权限水印研究[J]. 通信学报 2016(11)
    • [27].基于分层嵌入认证与恢复的自嵌入水印算法[J]. 计算机工程 2016(09)
    • [28].基于整数小波变换的可逆数据库水印[J]. 桂林理工大学学报 2017(01)
    • [29].云计算环境约束下的软件水印方案[J]. 网络与信息安全学报 2016(09)
    • [30].基于扩频调制和多水印的非对称水印算法[J]. 数据通信 2015(02)

    标签:;  ;  ;  ;  ;  ;  

    基于支持向量机的数字水印技术研究
    下载Doc文档

    猜你喜欢