杨贺珍:羧化壳聚糖凝胶聚合物电解质膜及全固态超级电容器论文

杨贺珍:羧化壳聚糖凝胶聚合物电解质膜及全固态超级电容器论文

本文主要研究内容

作者杨贺珍(2019)在《羧化壳聚糖凝胶聚合物电解质膜及全固态超级电容器》一文中研究指出:近年来,随着便携式/柔性可穿戴电子设备的推广,柔性储能器件的开发成为研究热点。在柔性/全固态超级电容器等储能器件中,传统的隔膜/电解液结构已经不能满足使用的需求。由于凝胶聚合物电解质(GPE)具有形状可控、离子电导率高、无液体泄露、一定的机械强度、柔性、安全环保等优点而成为柔性/全固态超级电容器电解质中的首选。鉴于此,许多的研究者将目光投向于凝胶聚合物电解质的研究。本文基于羧化壳聚糖(CYCTS)制备了三种不同的凝胶聚合物电解质膜,对羧化壳聚糖基凝胶电解质膜的结构和性能进行了表征,并将其与活性碳组装成全固态超级电容器,研究了全固态超级电容器的电化学性能。本论文的主要研究内容如下:(1)盐酸交联羧化壳聚糖凝胶电解质膜(CCH)。以CYCTS为聚合物基体,通过溶液流延法和盐酸浸泡法,盐酸充当交联剂的同时也作为电解液,用快捷的方法制备了一种CCH膜。结果表明:CYCTS在HCl条件下,分子链间以离子键和共价键相互交联。CCH膜的离子电导率高达8.69×10-2S/cm,CCH基全固态超级电容器电位窗口为00.9 V,0.5 A/g的电流密度下比电容高达45.9 F/g,能量密度达到5.2 Wh/kg。(2)羧化壳聚糖接枝聚丙烯酰胺基凝胶电解质膜(CYCTS-g-PAM)。与酸性和碱性电解液相比,中性电解液的超级电容器可以提供更宽的工作电压,从而提高器件的能量密度。以Li2SO4为电解液,过硫酸钾(KPS)为自由基引发剂,丙烯酰胺(AM)为接枝单体单元,N,N’-亚甲基双丙烯酰胺(MBA)为交联剂,通过引发自由基接枝共聚反应,制备了CYCTS-g-PAM-Li2SO4凝胶电解质膜。探究了单体配比、引发剂用量、交联剂用量对膜离子电导率和吸液率的影响,确定了制膜的最佳条件,研究了基于该膜的全固态超级电容器的电化学性能。结果表明:CYCTS-g-PAM-Li2SO4膜的机械性能相比CCH膜得到进一步提高,全固态超级电容器在01.4 V内获得了8.7Wh/kg的高能量密度。(3)羧化壳聚糖接枝聚丙烯酸钠基凝胶电解质膜(CYCTS-g-PAAS)。CCH膜在碱性溶液中会溶解,以CYCTS-g-PAM为基体,吸收碱性电解液会发生水解。为了使基于羧化壳聚糖的凝胶电解质膜能在碱性溶液中适用,以AA为接枝单元,KPS为引发剂,NaOH为中和剂,MBA为交联剂,以KOH为电解液,通过自由基接枝共聚反应,制备了CYCTS-g-PAAS-KOH膜用于全固态超级电容器。结果表明:CYCTS-g-PAAS-KOH基全固态超级电容器在00.9 V的工作电压下获得了优异的电化学性能。本论文研究了基于羧化壳聚糖的三种不同的凝胶电解质膜(HCl、Li2SO4、KOH作为导电物质)在全固态碳基超级电容器中的性能,成功实现了以羧化壳聚糖为聚合物基体,分别以酸性、中性、碱性电解液制备凝胶聚合物电解质膜的目的。HCl交联制备羧化壳聚糖或羧化壳聚糖/聚合物复合物作为一种新型的凝胶聚合物电解质材料,在其它储能器件中具有潜在的应用价值。

Abstract

jin nian lai ,sui zhao bian xie shi /rou xing ke chuan dai dian zi she bei de tui an ,rou xing chu neng qi jian de kai fa cheng wei yan jiu re dian 。zai rou xing /quan gu tai chao ji dian rong qi deng chu neng qi jian zhong ,chuan tong de ge mo /dian jie ye jie gou yi jing bu neng man zu shi yong de xu qiu 。you yu ning jiao ju ge wu dian jie zhi (GPE)ju you xing zhuang ke kong 、li zi dian dao lv gao 、mo ye ti xie lou 、yi ding de ji xie jiang du 、rou xing 、an quan huan bao deng you dian er cheng wei rou xing /quan gu tai chao ji dian rong qi dian jie zhi zhong de shou shua 。jian yu ci ,hu duo de yan jiu zhe jiang mu guang tou xiang yu ning jiao ju ge wu dian jie zhi de yan jiu 。ben wen ji yu suo hua ke ju tang (CYCTS)zhi bei le san chong bu tong de ning jiao ju ge wu dian jie zhi mo ,dui suo hua ke ju tang ji ning jiao dian jie zhi mo de jie gou he xing neng jin hang le biao zheng ,bing jiang ji yu huo xing tan zu zhuang cheng quan gu tai chao ji dian rong qi ,yan jiu le quan gu tai chao ji dian rong qi de dian hua xue xing neng 。ben lun wen de zhu yao yan jiu nei rong ru xia :(1)yan suan jiao lian suo hua ke ju tang ning jiao dian jie zhi mo (CCH)。yi CYCTSwei ju ge wu ji ti ,tong guo rong ye liu yan fa he yan suan jin pao fa ,yan suan chong dang jiao lian ji de tong shi ye zuo wei dian jie ye ,yong kuai jie de fang fa zhi bei le yi chong CCHmo 。jie guo biao ming :CYCTSzai HCltiao jian xia ,fen zi lian jian yi li zi jian he gong jia jian xiang hu jiao lian 。CCHmo de li zi dian dao lv gao da 8.69×10-2S/cm,CCHji quan gu tai chao ji dian rong qi dian wei chuang kou wei 00.9 V,0.5 A/gde dian liu mi du xia bi dian rong gao da 45.9 F/g,neng liang mi du da dao 5.2 Wh/kg。(2)suo hua ke ju tang jie zhi ju bing xi xian an ji ning jiao dian jie zhi mo (CYCTS-g-PAM)。yu suan xing he jian xing dian jie ye xiang bi ,zhong xing dian jie ye de chao ji dian rong qi ke yi di gong geng kuan de gong zuo dian ya ,cong er di gao qi jian de neng liang mi du 。yi Li2SO4wei dian jie ye ,guo liu suan jia (KPS)wei zi you ji yin fa ji ,bing xi xian an (AM)wei jie zhi chan ti chan yuan ,N,N’-ya jia ji shuang bing xi xian an (MBA)wei jiao lian ji ,tong guo yin fa zi you ji jie zhi gong ju fan ying ,zhi bei le CYCTS-g-PAM-Li2SO4ning jiao dian jie zhi mo 。tan jiu le chan ti pei bi 、yin fa ji yong liang 、jiao lian ji yong liang dui mo li zi dian dao lv he xi ye lv de ying xiang ,que ding le zhi mo de zui jia tiao jian ,yan jiu le ji yu gai mo de quan gu tai chao ji dian rong qi de dian hua xue xing neng 。jie guo biao ming :CYCTS-g-PAM-Li2SO4mo de ji xie xing neng xiang bi CCHmo de dao jin yi bu di gao ,quan gu tai chao ji dian rong qi zai 01.4 Vnei huo de le 8.7Wh/kgde gao neng liang mi du 。(3)suo hua ke ju tang jie zhi ju bing xi suan na ji ning jiao dian jie zhi mo (CYCTS-g-PAAS)。CCHmo zai jian xing rong ye zhong hui rong jie ,yi CYCTS-g-PAMwei ji ti ,xi shou jian xing dian jie ye hui fa sheng shui jie 。wei le shi ji yu suo hua ke ju tang de ning jiao dian jie zhi mo neng zai jian xing rong ye zhong kuo yong ,yi AAwei jie zhi chan yuan ,KPSwei yin fa ji ,NaOHwei zhong he ji ,MBAwei jiao lian ji ,yi KOHwei dian jie ye ,tong guo zi you ji jie zhi gong ju fan ying ,zhi bei le CYCTS-g-PAAS-KOHmo yong yu quan gu tai chao ji dian rong qi 。jie guo biao ming :CYCTS-g-PAAS-KOHji quan gu tai chao ji dian rong qi zai 00.9 Vde gong zuo dian ya xia huo de le you yi de dian hua xue xing neng 。ben lun wen yan jiu le ji yu suo hua ke ju tang de san chong bu tong de ning jiao dian jie zhi mo (HCl、Li2SO4、KOHzuo wei dao dian wu zhi )zai quan gu tai tan ji chao ji dian rong qi zhong de xing neng ,cheng gong shi xian le yi suo hua ke ju tang wei ju ge wu ji ti ,fen bie yi suan xing 、zhong xing 、jian xing dian jie ye zhi bei ning jiao ju ge wu dian jie zhi mo de mu de 。HCljiao lian zhi bei suo hua ke ju tang huo suo hua ke ju tang /ju ge wu fu ge wu zuo wei yi chong xin xing de ning jiao ju ge wu dian jie zhi cai liao ,zai ji ta chu neng qi jian zhong ju you qian zai de ying yong jia zhi 。

论文参考文献

  • [1].金属离子对MOFs衍生材料及其超级电容器性能的影响[D]. 岳慢丽.西北大学2019
  • [2].金属掺杂MIL-125(Ti)的CO2吸附及超级电容器电极材料性能研究[D]. 薛程.长安大学2019
  • [3].镍基钒酸盐电极材料的制备及电化学性能研究[D]. 孙贺.新疆大学2019
  • [4].MOFs基钴磷化物的制备及其电化学性能研究[D]. 王伟伟.新疆大学2019
  • [5].二维晶体V2C的制备及其气体吸附和电化学性能研究[D]. 王冰心.河南理工大学2018
  • [6].二氧化铈基超级电容器电极材料的制备及其性能研究[D]. 张航.江西师范大学2019
  • [7].超级电容器钴基电极材料制备及其储能机理的研究[D]. 陈明月.华中师范大学2019
  • [8].基于聚吡咯的超级电容器电极研究[D]. 智晓敏.山西大学2019
  • [9].钴镍基过渡金属复合氧化物在超级电容器电极中的应用[D]. 左广兴.牡丹江师范学院2019
  • [10].MOF材料在析氢、析氧以及超级电容器中的应用[D]. 褚梅.武汉理工大学2018
  • 读者推荐
  • [1].基于PANI/GO/CNTs复合薄膜的柔性可拉伸全固态超级电容器[D]. 蒋巧雅.郑州大学2019
  • [2].改性凝胶聚合物电解质组装PEDOT固态超级电容器[D]. 许玉玉.太原理工大学2019
  • [3].聚合物基柔性膜电极及一体化柔性超级电容器[D]. 董文举.兰州理工大学2019
  • [4].新型锂硫电池正极材料及凝胶电解质研究[D]. 赵金星.江汉大学2019
  • [5].PVA基凝胶电解质制备及柔性一体化超级电容器设计研究[D]. 马杰.中国矿业大学2019
  • [6].PVA水凝胶包埋取向碳纳米管阵列柔性固态超级电容器的研究[D]. 朱畦.苏州大学2018
  • [7].超级电容器用石墨烯水凝胶材料的制备及性能[D]. 傅弘义.浙江大学2019
  • [8].自修复聚电解质的制备及其在超级电容器中的应用研究[D]. 张博.中国科学院大学(中国科学院深圳先进技术研究院)2019
  • [9].基于NiCo2S4复合材料的柔性固态超级电容器器件制备与储能性能研究[D]. 谢金磊.浙江理工大学2019
  • [10].动态网络水凝胶在功能化超级电容器中的应用及性能探究[D]. 许璐.暨南大学2018
  • 论文详细介绍

    论文作者分别是来自兰州理工大学的杨贺珍,发表于刊物兰州理工大学2019-07-18论文,是一篇关于全固态超级电容器论文,凝胶聚合物电解质论文,羧化壳聚糖论文,离子电导率论文,电化学性能论文,兰州理工大学2019-07-18论文的文章。本文可供学术参考使用,各位学者可以免费参考阅读下载,文章观点不代表本站观点,资料来自兰州理工大学2019-07-18论文网站,若本站收录的文献无意侵犯了您的著作版权,请联系我们删除。

    标签:;  ;  ;  ;  ;  ;  

    杨贺珍:羧化壳聚糖凝胶聚合物电解质膜及全固态超级电容器论文
    下载Doc文档

    猜你喜欢