论文摘要
生物冶金技术是一种从矿物中提取金属的经济方法,特别适于处理贫矿、表外矿及废矿,并具有成本低、投入小、能耗低、对环境污染小等突出优点。在本文研究中,四株嗜酸硫氧化细菌得到分离纯化和鉴定。为了研究硫氧化细菌在硫化矿浸出中的作用以及是否通过氧化浸出过程中产生的单质硫来提高浸出率,本文主要从硫氧化细菌的分离和鉴定出发,重点研究了嗜铁钩端螺旋菌(Leptospirillum ferriphilum)和氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)这两株铁氧化细菌以及它们与硫氧化细菌混合对黄铜矿的浸出,同时考察了黄铜矿浸出过程中黄钾铁矾的作用,并讨论了以上四种细菌浸出黄铜矿的机理。从煤矿废水中分离得到四株硫氧化细菌S2,AA011,AA012和DMC。中度嗜热硫氧化细菌S2为革兰氏阴性细菌,短杆状,可运动,菌体大小为(0.4~0.6)μm×(1~2)μm。最适生长温度在42℃~45℃之间,最适初始生长pH为2.5。三株嗜温硫氧化细菌AA011,AA012和DMC为可运动的短杆状革兰氏阴性细菌,菌体大小为(0.4~0.7)μm×(1~2)μm。最适生长温度在30℃之间,最适初始生长pH为2.0~2.5。四株细菌均可利用硫磺、四硫酸盐、硫代硫酸盐为能源进行化能自养型生长,不能利用蛋白胨、葡萄糖、酵母粉等有机物以及,也不能进行混合型生长对分离菌株进行了形态、生理生化特性研究及16S rRNA序列分析。这三株细菌均为革兰氏阴性细菌,短杆状,化能自养,可利用单质硫、四硫酸盐、硫代硫酸盐为能源生长,不能利用蛋白胨、葡萄糖、酵母粉等有机物以及硫酸亚铁、黄铁矿、黄铜矿等为能源生长。根据细菌形态特征、生理生化特征和以16S rDNA序列同源性为基础构建的系统发育树分析,结果表明菌株S2与喜温硫杆菌(Acidithiobacillus caldus)处于同一进化树分支中,菌株AA011,AA012和DMC与氧化硫硫杆菌(Acidthiobacillus thiooxidans)处于同一进化树分支中,基因序列相似性均大于99%。当菌株S2分别与嗜铁钩端螺旋菌(Leptospirillum ferriphilum)和氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)混合浸出黄铜矿时,铜浸出率与铁氧化细菌纯培养物相比分别提高56.8%和10%。嗜铁钩端螺旋菌和喜温硫杆菌混合浸出的黄铜矿矿渣的电子扫描显微镜照片显示黄铜矿表面受到细菌的严重蚀刻。各浸矿体系的矿渣的X-衍射分析表明喜温硫杆菌具有通过氧化浸矿过程中产生的硫从而促进黄铜矿浸出的作用。利用氧化亚铁硫杆菌、氧化硫硫杆菌、嗜铁钩端螺旋菌和喜温硫杆菌四种细菌的纯培养物和混合菌进行黄铜矿摇瓶浸出实验。实验结果表明铁氧化细菌与硫氧化细菌混合浸出黄铜矿的效率高出铁氧化细菌纯培养物单独浸出时4.4%-13.9%。硫氧化细菌的存在能有效促进黄铜矿的浸出速率和浸出率。中度嗜热的嗜铁钩端螺旋菌和喜温硫杆菌混合菌的浸出效率比嗜温的氧化亚铁硫杆菌混合菌高出大约8.6%-18%。在含有氧化亚铁硫杆菌的浸出体系中,黄铜矿浸出速率在浸出12-16天后开始下降,这与浸出过程中在矿物表面形成的钝化膜黄钾铁矾有关。嗜铁钩端螺旋菌的纯培养物以及混合菌浸出体系的低pH则大大减少了黄钾铁矾的形成。
论文目录
摘要ABSTRACTTable of ContentChapter 1 Introductions1.1 Biomining: historical development, current state and future1.1.1 Historical development of biomining1.1.2 Current state of biomining1.1.3 Future of biomining1.2 Microorganisms used for biomining1.2.1 Mesophilic microorganisms1.2.2 Thermophilic microorganisms1.2.3 Hyperthermophilic microorganisms1.3 Bioleaching of sulfide minerals with emphasis on chalcopyrite1.3.1 Mechanisms of bioleaching1.3.2 Sulfur chemistry1.3.3 Iron chemistry1.3.4 Microbial attachment1.4 The objective and main content of the present study1.4.1 The objective of the present study1.4.2 The main content of the present studyChapter 2 Isolation and Characterization of acidophilic sulfur-oxidizing bacteria2.1 Material and method2.1.1 Culture media2.1.2 Isolation and morphology observation2.1.3 Physiological characterization2.1.4 Amplification, sequencing and phylogenetic analysis of 16S rRNA genes2.2 Isolation and morphological characterization2.3 Biochemical and physiological characterization2'>2.3.1 Biochemical and physiological characterization of Strain S22.3.2 Biochemical and physiological characterization of Strain A01, A02 and DMC2.4 16S rRNA gene sequence analysis and identification of the strains2.5 ConclusionsChapter 3 The role of Acidithiobacillus caldus in bioleaching of chalcopyrite3.1 Material and method3.1.1 Microorganisms and minerals3.1.2 Bioleaching experiments3.1.3 Chemical analysis3.2 Chalcopyrite bioleaching by Acidithiobacillus caldus and iron-oxidizing bacteria3.3 SEM, EDX and XRD analysis of leached residues3.4 ConclusionsChapter 4 Bioleaching of chalcopyrite by Acidithiobacillus spp. and Leptospirillum ferriphilum4.1 Materials and methods4.1.1 Culture media and microorganisms4.1.2 Minerals4.1.3 Bioleaching experiments4.1.4 Chemical analysis4.2 Bioleaching of chalcopyrite by pure and mixed culture of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidithiobacillus caldus4.3 Bioleaching of chalcopyrite by pure and mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus4.4 SEM and AFM images of polished mineral blocks4.4.1 SEM images of polished mineral blocks4.4.2 AFM images of polished mineral blocks4.5 The weigh ratio of jarosite and oxidized chalcopyrite in the leached residues from different bioleaching systems4.6 ConclusionsChapter 5 Conclusions and Future research Questions5.1 Conclusions5.2 Future research QuestionsReferencesAcknowledgementsMain achievements
相关论文文献
标签:硫杆菌论文; 钩端螺旋菌论文; 黄铜矿论文; 生物浸出论文; 黄钾铁矾论文;
硫氧化细菌的分离鉴定以及与铁氧化细菌混合浸出黄铜矿
下载Doc文档