论文摘要
位移测量是测量技术中最基本的项目之一,在工程运用中非常广泛,具有非常重要的位置。因此,寻求简单实用、操作方便、适应范围广、经济性好的位移传感器对促进工业生产发展具有重要现实意义。由于独特的电绝缘性赋予了光纤Bragg光栅抗电磁干扰能力(EMI)和易燃易爆场合的本安特性,使得光纤Bragg光栅传感技术迅速发展起来了。此外,光纤传感器用于位移检测具有诸多常规检测技术不可比拟的优点,如环境适应性强,灵敏度高,体小质轻,可挠曲,测量对象广泛,可实现非接触测量,综合性价比高等。本文以光纤Bragg光栅作为传感元件研制了一种位移测量装置,它利用测量杆通过楔形块作用在固定于底座的等强度悬臂梁上,其中,光纤Bragg光栅粘贴于其中一块等强度悬臂梁内表面的中心线处。在测量试验中,当测量杆产生位移时,就会带动楔形块产生相应的位移,并促使等强度悬臂梁的自由端产生扰度变化,从而导致粘贴于等强度悬臂梁内表面的光纤Bragg光栅产生波长移位。本文主要研究内容如下:1、根据双悬臂梁式结构,建立了双悬臂梁式光纤Bragg光栅位移感器的模型。2、对双悬臂梁式光纤Bragg光栅位移感器进行材料选择,等强度悬臂梁的尺寸为135×70.2×3mm,等强度悬臂梁所选用的材料为1Cr18Ni9Ti,楔形块的内径为35mm,外径为50mm,角度为10度,测量杆的长度为450mm,直径为1.6mm,底座的尺寸为380×120×12mm,滚花为底面直径为30mm,高12mm的圆柱形,滚轴的长度为80mm,滚尖的角度为60度,直径为6mm。3、通过移动测量杆,对双悬臂梁式光纤Bragg光栅位移传感器进行位移实验,实验表明,当测量杆位移增加或者减少时,位于中心测点的光纤Bragg光栅的实验灵敏度为0.0145nm/mm,重复性误差为2.2%,线性度为0.99706,迟滞为0.0626%FS。
论文目录
相关论文文献
- [1].Testing the Universality of Free Fall by Comparing the Atoms in Different Hyperfine States with Bragg Diffraction[J]. Chinese Physics Letters 2020(04)
- [2].Theoretical Simulation of the Temporal Behavior of Bragg Diffraction Derived from Lattice Deformation[J]. Chinese Physics Letters 2020(07)
- [3].固定于水面的多个半圆形结构物的水波Bragg反射[J]. 上海交通大学学报 2019(09)
- [4].基于光纤Bragg光栅传感器的车辆载重动态检测系统的初步开发[J]. 通讯世界 2016(24)
- [5].Spectral Beam Combining of Fiber Lasers by Using Reflecting Volume Bragg Gratings[J]. Chinese Physics Letters 2016(12)
- [6].Proton Bragg Peak Irradiation Experiment of Components for Aerospace[J]. Annual Report of China Institute of Atomic Energy 2019(00)
- [7].光纤Bragg光栅振动传感器的标定与不确定度分析[J]. 机械科学与技术 2020(11)
- [8].BRIGHT:the three-dimensional X-ray crystal Bragg diffraction code[J]. Nuclear Science and Techniques 2019(03)
- [9].Periodic structural defects in Bragg gratings and their application in multiwavelength devices[J]. Photonics Research 2016(02)
- [10].Wave Power Focusing due to the Bragg Resonance[J]. China Ocean Engineering 2017(04)
- [11].基于光纤Bragg光栅传感器的现役高桩码头结构健康监测系统设计与实施[J]. 水道港口 2016(02)
- [12].Numerical Simulation of Bragg Reflection Based on Linear Waves Propagation over A Series of Rectangular Seabed[J]. China Ocean Engineering 2008(01)
- [13].Design of a Solid-Core Large-Mode-Area Bragg Fiber[J]. Chinese Physics Letters 2015(05)
- [14].An introduction to Bragg diffraction-based cold atom interferometry gravimeter[J]. Instrumentation 2015(04)
- [15].Interrogating a Fiber Bragg Grating Vibration Sensor by Narrow Line Width Light[J]. Journal of Electronic Science and Technology of China 2008(04)
- [16].Demodulation System for Fiber Bragg Grating Sensors Using Digital Filtering Technique[J]. Transactions of Tianjin University 2008(01)
- [17].Modification of Interfacial Performance of Fiber Bragg Grating Embedded in the Composite Materials[J]. Journal of Wuhan University of Technology(Materials Science) 2017(04)
- [18].Bragg reflection in a quantum periodic structure[J]. Chinese Optics Letters 2015(12)
- [19].基于光纤Bragg光栅的采动支承压力分布试验研究[J]. 西安科技大学学报 2016(02)
- [20].低能质子的Bragg曲线测量[J]. 中国原子能科学研究院年报 2017(00)
- [21].Two-dimensional non-spatial filtering based on holographic Bragg gratings[J]. Chinese Physics B 2010(07)
- [22].Fiber Bragg Gratings in Small-Core Ge-Doped Photonic Crystal Fibers[J]. Journal of Electronic Science and Technology of China 2008(04)
- [23].Thermal characteristics of Fabry–Perot cavity based on regenerated fiber Bragg gratings[J]. Chinese Optics Letters 2018(12)
- [24].Damage and recovery of fiber Bragg grating under radiation environment[J]. Chinese Physics B 2018(09)
- [25].光纤Bragg光栅倾角传感器的标定与不确定度分析[J]. 光学技术 2017(03)
- [26].Irradiation effect on strain sensitivity coefficient of strain sensing fiber Bragg gratings[J]. Chinese Physics B 2014(01)
- [27].基于3G的光纤Bragg光栅地层沉降监测系统[J]. 传感器与微系统 2013(09)
- [28].Theoretical analysis of polarization properties for tilted fiber Bragg gratings[J]. Science China(Information Sciences) 2010(02)
- [29].一种基于光纤Bragg光栅传感器的挡土墙变形监测技术[J]. 传感器与微系统 2010(11)
- [30].Mechanism of Bragg Diffraction-Assisted Light Extraction in GaN-based Light-Emitting Diodes Based on a Self-Consistent Model[J]. Communications in Theoretical Physics 2009(09)