论文摘要
登陆艇(LCU)专门用于将重型车辆,如作战坦克或军车等从主力平台(capital platform)运送到海岸上。主力平台(capital platform)北约内部称作两栖登陆舰(Landing Platform Docks(LPD))能使登陆艇从其尾部的井式甲板驶入或驶出。目前的登陆艇受性能不足的约束,已经严重制约了其两栖作业的功能。本论文的主要目的是开发一种新型的高速登陆艇的初步设计。提出了基于英国皇家海军的创新方案示范船(ISDC),即局部气垫支撑双体船(PACSCAT)的新型高速登陆艇的初步设计。局部气垫支撑双体船(PACSCAT)使用连接桥将两个轻型片体连接起来,并且该连接桥也可用作货物甲板。局部气垫支撑双体船(PACSCAT)是两种概念的融合体:海面效应船(SES)与气垫船(ACV)。本论文的主要研究内容如下:第一章,首先对船舶初步设计中用到的方法进行了综述,其次对本论文所要研究范围与内容进行了讨论,并从设计的特殊要求角度出发阐述了该研究的重要性。第二章,描述了传统登陆艇的分类和发展,并对目前现代登陆艇所使用的最先进技术:微泡技术,水翼船概念以及气垫船进行了重点研究,通过对比分析为本设计选择了合适的方案。第三章,在对一系列现代登陆艇参数分析的结果上,确定了本登陆艇的主尺度并绘制了其型线图;使用Maxsurf完成了本艇的三维模型及静水力计算,最后用Pro-Engineering solid modeling软件完成该艇的上层建筑设计。第四章,研究了局部气垫支撑双体船(PACSCAT)阻力计算的方法,并对阻力中不同成分进行了详细分析研究。第五章,研究了本登陆艇的动力与推进系统,最后设计了局部抬升本艇从而减少其吃水的气垫系统。第六章,参照德国LR船级社《特殊用途船入级规范》中有关高速双体船的规范要求,确定了本艇船体构件尺寸的选取。第七章,将计算得到构件尺寸结果,在ANSYS软件(一个十分流行的有限云分析系统)中进行了更详细的有限元验证分析,从而保证了该设计的安全性与可靠性。创新方案示范船一一局部气垫支撑双体船(PACSCAT ISDC)是具有一对片体的气垫船。空气从两片体间吹进以提供升力来减少拖曳摩擦力,提高船速且具有更大的抢滩能力。不同于海面效应船(SES),局部气垫支撑双体船(PACSCAT)因其较宽的船体而使其拥有更高的负载能力。
论文目录
摘要ABSTRACTACKNOWLEDGMENTSCHAPTER 1 INTRODUCTION1.1 Purpose and Significance of Current Research Work1.2 Method1.3 Vision1.3.1 Technical Vision1.3.2 Tactical Vision1.4 Specification of Requirements1.4.1 Cargo Vehicles1.4.2 Landing Platform Dock,LPD1.5 Conclusion1.6 Chapter SummaryCHAPTER 2. CONCEPT2.1 Classification of Ship Borne Landing Craft2.2 Development of Ship Borne Landing Craft2.2.1 Conventional Flat-Bottomed Barge-type Landing Craft2.2.2 Landing Craft Air Cushion(LCAC)2.2.3 Catamaran Concept of Landing Craft2.2.4 Surface Effect Ship(SES)Type Landing Craft2.2.5 Conclusion(Selection of Hull form)2.3 Modern Technologies Available With High Speed Crafts2.3.1 Micro Bubble Technology2.3.2 Under Water Lifting Body(Hydro foils and Aft Cross foils Concept)2.3.3 Partial Air Cushion Supported Catamaran(PACSCAT)2.3.4 Conclusion(Selection of Innovative technology)2.3.5 The Concept of High Speed Landing Craft(PACSCAT)2.4 Chapter SummaryCHAPTER 3. INITIAL DESIGN AND MAXSURF MODELING3.1 Parametric Analysis3.1.1 Selection of Principle Dimensions3.1.2 Selection of Demi Hull Dimensions3.2 General Arrangement3.3 Introduction to 3D Modeling in Naval Architecture3.4 Maxsurf3.5 PACSCAT Modeling in Maxsurf3.5.1 Maxsurf Solid Hull Modeling3.5.2 Maxsurf Hull Model Lines Plan3.5.3 Curve of Cross Sectional Areas3.6 3D Modeling of PACSCAT by Pro-Engineering3.7 Chapter SummaryCHAPTER 4. RESISTANCE CALCULATIONS OF PACSCAT4.1 Wave Making Resistance,4.2 Aerodynamic Profile Resistance4.3 Skirt Drag4.4 Sidewalls Friction Resistance4.5 Total Resistance of PACSCAT4.6 Chapter SummaryCHAPTER 5. POWERING,PROPULSION AND AIR CUSHION SYSTEM5.1 Selection of Main Engine5.1.1 Fuel Consumption5.2 Selection of Water Jet Unit5.2.1 Why MJP Water Jet?5.3 Air Cushion System Design5.3.1 Introduction5.3.2 Cushion Pressure5.3.3 Air Flow Rate5.3.4 Lift Power5.3.5 Selection of Fan Type5.3.6 Lift Engines5.4 Chapter SummaryCHAPTER 6. HULL STRUCTURAL DESIGN6.1 Material Selection6.1.1 Why Built PACSCAT with Aluminium?6.1.2 Yield Strength6.1.3 Specific Aluminium Alloy Selection6.1.3.1 5 086 Aluminium Alloy6.2 Class Notations of PACSCAT6.3 Motion Response6.3.1 Relative vertical motion6.3.2 Vertical acceleration6.4 Loads on Shell Envelope6.4.1 Hydrostatic Pressure on the shell plating6.4.2 Hydrodynamic wave pressure6.4.3 Weather Deck Pressure6.4.4 Pressure on Interior Decks6.4.5 Combined pressure distribution6.5 Impact Loads6.5.1 Bottom shell impact pressure due to slamming6.5.2 Side shell impact pressure due to slamming6.5.3 Forebody impact pressure6.5.4 Conclusion6.6 Local Design Criteria for Non-Displacement Mode6.7 Hull envelope design criteria(Hull structures)6.7.1 Bottom Shell6.7.2 Outboard side shell6.7.3 Inboard side shell6.7.4 Wet Deck6.8 Components6.8.1 Weather Deck6.8.2 Coachroof Deck6.8.3 Interior Deck6.8.4 Inner Bottom6.8.5 Watertight and Deep Tank Bulkheads6.9 Additional Effective Pressures6.9.1 Bottom longitudinal amidships additional effective pressure6.9.2 Bottom plating amidships additional effective pressure6.10 Global Load and Design Criteria6.10.1 Vertical wave bending moments and associated shear forces6.10.2 Wave Shear Force6.10.3 Dynamic Bending Moments6.10.4 Dynamic Shear Force6.11 Global Load and Design Criteria6.11.1 Transverse Bending Moment6.11.2 Twin Hull Torsional Moment6.11.3 Vertical Shear Force6.12 Design criteria and load combinations6.12.1 Rule bending moment6.12.2 Rule Shear Forces6.13 Scantling Determination for Multi-Hull Craft6.13.1 Minimum Plating Thickness Requirements6.13.2 Shell Envelope Plating6.13.2.1 Keel Plates6.13.2.2 General Plating6.13.3 Single Bottom Structure and Appendages6.13.3.1 Keel6.13.3.2 Centre girder6.13.3.3 Side girders6.13.3.4 Floors General6.13.3.5 Floors in machinery spaces6.13.3.6 Forefoot and stem6.13.4 Shell envelope framing(Stiffening General)6.13.5 Stiffener Profiling6.13.6 Watertight Bulkheads and Deep Tank Plating6.13.7 Deck structures6.14 Hull Girder Strength6.14.1 Hull Longitudinal Bending Strength6.14.2 Hull Shear Strength6.14.3 Strength of cross-deck structures6.14.4 ConclusionCHAPTER 7. DIRECT CALCULATIONS7.1 Finite Element Analysis7.1.1 Model Development Approach7.1.1.1 Non-Parametric Model Generation7.1.1.2 Parametric Model generation7.1.1.3 Current Model Generation Approach-GUI Approach7.1.2 3D Global Finite Element Model Development7.1.3 Boundary Conditions.7.1.3.1 Spring Constraints Evaluation7.1.4 Extent of FEM Modeling7.1.5 Analysis Phase (Load Cases Applications)7.1.5.1 Moment Application (Load Case 1)7.1.5.2Sea Pressure Application @ T= 0.8m (Load Case 2)7.1.5.3Sea Pressure Application @ T= 1.5m (Load Case 3)7.1.5.4 Only Battle Tank (Load Case 4)7.1.5.5Moments and Tank (Load Case 5)7.1.5.6Full Load Condition (Load Case 6)7.1.6 Analysis and Results7.1.6.1 Hogging Moment Condition (Load Case 1)7.1.6.2 Sagging Moment Condition (Load Case 1)7.1.6.3 Torsional Moment Application (Load Case 1)7.1.6.4Sea Pressure Application @ T=0.8m (Load Case 2)7.1.6.5Sea Pressure Application @ T=1.5m (Load Case 3)7.1.6.6 Only Battle Tank Loading (Load Case 4)7.1.6.7Moment and Tank Combine Loading (Load Case 5)7.1.6.8Full Load Condition (Load Case 6)7.1.7 Theoretical Validation7.1.7.1 Comparison7.1.7.2 ConclusionCONCLUDING REMARKS AND FUTURE RECOMMENDATIONSConcluding RemarksRecommendations for Future WorkREFERENCES
相关论文文献
- [1].氢能源双体船[J]. 汽车知识 2020(03)
- [2].蛇宴[J]. 意林(原创版) 2017(08)
- [3].神奇的全太阳能动力双体船[J]. 大江周刊(生活) 2011(09)
- [4].一种水车式湖面垃圾清理及水体增氧双体船结构设计[J]. 机械工程师 2020(09)
- [5].非对称双体船布局优选研究[J]. 舰船科学技术 2018(11)
- [6].不同附体对穿浪双体船阻力和耐波性影响研究[J]. 舰船科学技术 2015(07)
- [7].穿浪双体船剩余阻力影响因素分析及总阻力预报方法[J]. 船舶力学 2011(Z1)
- [8].穿浪双体船附连水质量计算讨论[J]. 船海工程 2010(01)
- [9].计及航行纵倾变化的穿浪双体船阻力预报新方法研究[J]. 海军工程大学学报 2008(05)
- [10].适应近海落水人员快速救援的双体船设计与分析[J]. 造船技术 2020(02)
- [11].截流板/尾楔对加装T型水翼的双体船阻力影响的数值计算[J]. 广东造船 2019(02)
- [12].基于阻力分析的穿浪双体船船型设计及优化[J]. 舰船科学技术 2019(13)
- [13].浮油回收双体船结构强度评估方法[J]. 舰船科学技术 2018(19)
- [14].穿浪双体船迎浪纵向运动和阻力增值数值分析[J]. 海军工程大学学报 2016(01)
- [15].穿浪双体船纵向运动滑模控制[J]. 计算技术与自动化 2014(02)
- [16].波浪对穿浪双体船摇荡运动的影响[J]. 舰船科学技术 2012(04)
- [17].高速轻型穿浪双体船纵向运动改善措施研究[J]. 中国舰船研究 2012(02)
- [18].三维流体动力方法计算穿浪双体船的船体响应[J]. 中国舰船研究 2011(02)
- [19].我国穿浪双体船正朝大型化实用化发展[J]. 交通与运输 2010(03)
- [20].穿浪双体船的阻力分析与船型优化[J]. 武汉船舶职业技术学院学报 2019(01)
- [21].采用自控T型翼和尾板改善穿浪双体船波浪中运动研究[J]. 中国水运(下半月) 2015(09)
- [22].穿浪双体船纵向运动的理论预报研究[J]. 中国水运(下半月) 2013(02)
- [23].穿浪双体船的阻力性能分析[J]. 中国水运(下半月) 2013(02)
- [24].穿浪双体船总体设计载荷研究[J]. 船舶力学 2010(Z1)
- [25].高速轻型穿浪双体船船型及性能试验研究[J]. 中国造船 2008(03)
- [26].水翼双体船纵向姿态鲁棒估计的仿真实验研究[J]. 实验室科学 2018(01)
- [27].局部气垫双体船阻力性能及片体间距优化研究[J]. 武汉理工大学学报(交通科学与工程版) 2014(06)
- [28].穿浪双体船纵向运动控制系统试验水池样机方案设计[J]. 船电技术 2014(06)
- [29].猎豹双体船交付碧桂园[J]. 珠江水运 2013(16)
- [30].基于模糊神经网络的穿浪双体船摇荡运动预报[J]. 广州航海高等专科学校学报 2011(04)
标签:登陆艇论文; 两栖论文;
Initial Design of High Speed Landing Craft PACSCAT
下载Doc文档