AlGaN/GaN肖特基势垒二极管制作工艺与器件特性研究

AlGaN/GaN肖特基势垒二极管制作工艺与器件特性研究

论文摘要

近十年来,宽禁带半导体电力电子器件已成为半导体领域的研究重点之一。AlGaN/GaN肖特基势垒二极管(Schottky Barrier Diode,SBD)具有高压、大电流、大功率的优势,是一种非常有应用前景的电力电子器件。随着GaN基异质结材料生长技术和器件制作工艺不断完善,已有AlGaN/GaN SBD产品问世,但产品技术还远未成熟。本论文主要研究了制作AlGaN/GaN SBD的两个关键问题:表面处理对其欧姆接触的影响和机理,以及肖特基电极的优化和表面态的计算。欧姆接触是影响AlGaN/GaN SBD器件性能的关键因素之一。本论文研究了表面处理对欧姆接触质量的改善及其机理。比接触电阻率的测试结果表明,溶液处理可以降低比接触电阻率,结合XPS测试结果分析得出:溶液表面处理不但能够有效去除AlGaN表面的氧化层,而且能够生成钝化膜,有效降低表面态密度,进而降低电子隧穿势垒的高度,显著改善欧姆接触的质量。肖特基接触电极是AlGaN/GaN SBD中最为关键的工艺,电极尺寸、电极金属和半导体表面性质等都会影响其质量。本论文研究了器件正向导通电流和反向击穿随器件电极尺寸的变化规律,并且比较了Pt和Ni两种不同金属制作的肖特基电极的性能。同时,为了定量地研究表面态对器件性能的影响,本论文提出了一种改进的表面态等价电路模型,并通过实验和理论计算比较了表面处理前后肖特基势垒高度和表面态密度。结果表明,表面处理可以有效提高肖特基势垒高度,降低表面态密度,优化肖特基接触质量。

论文目录

  • 摘要
  • Abstract
  • 主要符号对照表
  • 第1章 绪论
  • 1.1 电力电子器件概述
  • 1.2 AlGaN/GaN SBD 的研究意义
  • 1.3 AlGaN/GaN SBD 的研究现状及面临的问题
  • 1.4 论文的主要研究内容
  • 第2章 AlGaN/GaN SBD 工作原理及评测方法
  • 2.1 AlGaN/GaN SBD 基本结构及工作原理
  • 2.1.1 AlGaN/GaN SBD 基本结构
  • 2.1.2 金属半导体接触
  • 2.1.3 半导体表面性质对金属半导体接触的影响
  • 2.1.4 AlGaN/GaN SBD 工作原理
  • 2.2 AlGaN/GaN SBD 评测方法
  • 2.2.1 I-V 测试
  • 2.2.2 C-V 测试
  • 2.3 本章小结
  • 第3章 表面处理对 AlGaN/GaN SBD 欧姆接触的影响
  • 3.1 AlGaN/GaN SBD 的欧姆接触
  • 3.2 欧姆接触的测试及分析方法
  • 3.2.1 传输线模型
  • 3.2.2 X 射线光电子能谱
  • 3.3 表面处理对 AlGaN/GaN SBD 欧姆接触的影响及机理
  • 3.3.1 实验过程
  • 3.3.2 测试结果分析
  • 3.4 本章小结
  • 第4章 AlGaN/GaN SBD 的肖特基接触电极
  • 4.1 AlGaN/GaN SBD 高质量肖特基接触电极的制作
  • 4.1.1 器件制作工艺过程
  • 4.1.2 器件图形尺寸的优化
  • 4.1.3 器件肖特基电极金属的优化
  • 4.2 AlGaN/GaN SBD 的表面态计算
  • 4.2.1 表面态测试及计算原理
  • 4.2.2 表面态计算模型
  • 4.3.3 实验及计算结果
  • 4.3 本章小结
  • 第5章 总结
  • 参考文献
  • 致谢
  • 个人简历、在学期间发表的学术论文与研究成果
  • 相关论文文献

    • [1].Characterization of Interface Charge in NbAlO/AlGaN/GaN MOSHEMT with Different NbAlO Thicknesses[J]. Chinese Physics Letters 2015(01)
    • [2].High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chinese Physics Letters 2015(03)
    • [3].Observation of a Current Plateau in the Transfer Characteristics of InGaN/AlGaN/AlN/GaN Heterojunction Field Effect Transistors[J]. Chinese Physics Letters 2015(12)
    • [4].基于第一性原理的AlGaN合金热电性质研究[J]. 人工晶体学报 2019(12)
    • [5].In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT[J]. Chinese Physics B 2020(04)
    • [6].Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chinese Physics Letters 2020(02)
    • [7].Theoretical analytic model for RESURF AlGaN/GaN HEMTs[J]. Chinese Physics B 2019(02)
    • [8].Short-gate AlGaN/GaN high-electron mobility transistors with BGaN buffer[J]. Chinese Physics B 2019(04)
    • [9].Method of evaluating interface traps in Al_2O_3/AlGaN/GaN high electron mobility transistors[J]. Chinese Physics B 2019(06)
    • [10].AlGaN/GaN横向肖特基势垒二极管的仿真与制作[J]. 半导体技术 2018(05)
    • [11].Recombination mechanisms and thermal droop in AlGaN-based UV-B LEDs[J]. Photonics Research 2017(02)
    • [12].Influence of adatom migration on wrinkling morphologies of AlGaN/GaN micro-pyramids grown by selective MOVPE[J]. Chinese Physics B 2017(06)
    • [13].Comparison of GaN/AlGaN/AlN/GaN HEMTs Grown on Sapphire with Fe-Modulation-Doped and Unintentionally Doped GaN Buffer:Material Growth and Device Fabrication[J]. Chinese Physics Letters 2016(11)
    • [14].Enhancement of Breakdown Voltage in AlGaN/GaN High Electron Mobility Transistors Using Double Buried p-Type Layers[J]. Chinese Physics Letters 2016(06)
    • [15].Fabrication of GaN-Based Heterostructures with an InA1GaN/AlGaN Composite Barrier[J]. Chinese Physics Letters 2016(08)
    • [16].Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure[J]. Chinese Physics B 2016(06)
    • [17].Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor[J]. Chinese Physics B 2015(08)
    • [18].Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer[J]. Chinese Physics B 2013(10)
    • [19].蓝宝石衬底多层AlGaN薄膜透射谱研究[J]. 光学学报 2020(19)
    • [20].AlGaN Channel High Electron Mobility Transistors with an Al_xGa_(1-x)N/GaN Composite Buffer Layer[J]. Chinese Physics Letters 2015(07)
    • [21].Efficiency improvement of AlGaN-based deep ultraviolet LEDs with gradual Al-composition AlGaN conduction layer[J]. Optoelectronics Letters 2020(04)
    • [22].硅基AlGaN紫外大功率LED外延、芯片与封装的专利分析[J]. 中国照明电器 2019(08)
    • [23].Parasitic source resistance at different temperatures for AlGaN/AlN/GaN heterostructure field-effect transistors[J]. Chinese Physics B 2017(09)
    • [24].Intrinsic relationship between photoluminescence and electrical characteristics in modulation Fe-doped AlGaN/GaN HEMTs[J]. Chinese Physics B 2017(09)
    • [25].Excellent-Performance AlGaN/GaN Fin-MOSHEMTs with Self-Aligned Al_2O_3Gate Dielectric[J]. Chinese Physics Letters 2016(09)
    • [26].High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chinese Physics Letters 2017(01)
    • [27].Aluminum incorporation efficiencies in A- and C-plane AlGaN grown by MOVPE[J]. Chinese Physics B 2016(04)
    • [28].Improved mobility of AlGaN channel heterojunction material using an AlGaN/GaN composite buffer layer[J]. Chinese Physics B 2014(03)
    • [29].A GaN AlGaN InGaN last quantum barrier in an InGaN/GaN multiple-quantum-well blue LED[J]. Chinese Physics B 2014(04)
    • [30].An improved EEHEMT model for kink effect on AlGaN/GaN HEMT[J]. Chinese Physics B 2014(08)

    标签:;  ;  ;  ;  

    AlGaN/GaN肖特基势垒二极管制作工艺与器件特性研究
    下载Doc文档

    猜你喜欢